Sr Examen

Otras calculadoras

Gráfico de la función y = ((2x+2)(x-2)(3x-2))^(1/3)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
       3 _____________________________
f(x) = \/ (2*x + 2)*(x - 2)*(3*x - 2) 
$$f{\left(x \right)} = \sqrt[3]{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)}$$
f = (((x - 2)*(2*x + 2))*(3*x - 2))^(1/3)
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\sqrt[3]{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = \frac{5}{9} - \frac{\sqrt[3]{\frac{91}{27} + 10 \sqrt{3} i}}{3} - \frac{61}{27 \sqrt[3]{\frac{91}{27} + 10 \sqrt{3} i}}$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en (((2*x + 2)*(x - 2))*(3*x - 2))^(1/3).
$$\sqrt[3]{\left(-2\right) \left(0 \cdot 2 + 2\right) \left(-2 + 0 \cdot 3\right)}$$
Resultado:
$$f{\left(0 \right)} = 2$$
Punto:
(0, 2)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$\frac{\sqrt[3]{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)} \left(\left(x - 2\right) \left(2 x + 2\right) + \frac{\left(3 x - 2\right) \left(4 x - 2\right)}{3}\right)}{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = -0.312249963989628$$
Signos de extremos en los puntos:
(-0.3122499639896283, 2.10597940652439)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
La función no tiene puntos mínimos
Puntos máximos de la función:
$$x_{1} = -0.312249963989628$$
Decrece en los intervalos
$$\left(-\infty, -0.312249963989628\right]$$
Crece en los intervalos
$$\left[-0.312249963989628, \infty\right)$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{\sqrt[3]{2} \sqrt[3]{\left(x - 2\right) \left(x + 1\right) \left(3 x - 2\right)} \left(6 x - \frac{10}{3} - \frac{3 \left(x - 2\right) \left(x + 1\right) + \left(2 x - 1\right) \left(3 x - 2\right)}{3 x - 2} - \frac{3 \left(x - 2\right) \left(x + 1\right) + \left(2 x - 1\right) \left(3 x - 2\right)}{3 \left(x + 1\right)} - \frac{3 \left(x - 2\right) \left(x + 1\right) + \left(2 x - 1\right) \left(3 x - 2\right)}{3 \left(x - 2\right)} + \frac{\left(3 \left(x - 2\right) \left(x + 1\right) + \left(2 x - 1\right) \left(3 x - 2\right)\right) \left(3 \left(x - 2\right) \left(x + 1\right) + \left(x - 2\right) \left(3 x - 2\right) + \left(x + 1\right) \left(3 x - 2\right)\right)}{9 \left(x - 2\right) \left(x + 1\right) \left(3 x - 2\right)}\right)}{\left(x - 2\right) \left(x + 1\right) \left(3 x - 2\right)} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 24445.5880926726$$
$$x_{2} = -30626.4830587122$$
$$x_{3} = 41402.7524610798$$
$$x_{4} = -20450.3721762895$$
$$x_{5} = -40800.17657849$$
$$x_{6} = 27837.5172290537$$
$$x_{7} = 28685.4435141995$$
$$x_{8} = -16208.5378609253$$
$$x_{9} = 29533.3512666467$$
$$x_{10} = 42250.5034798455$$
$$x_{11} = -23842.867872667$$
$$x_{12} = 34620.484988838$$
$$x_{13} = 37163.8967247853$$
$$x_{14} = 38859.4609074896$$
$$x_{15} = -19602.1365023669$$
$$x_{16} = -39952.4161733471$$
$$x_{17} = 16811.5086118106$$
$$x_{18} = 39707.231586598$$
$$x_{19} = 31229.1172239937$$
$$x_{20} = 32924.8256410311$$
$$x_{21} = 35468.2984652152$$
$$x_{22} = 20204.9605338011$$
$$x_{23} = 25293.6084927538$$
$$x_{24} = 22749.4539659581$$
$$x_{25} = -25538.9095773635$$
$$x_{26} = 21901.3329925949$$
$$x_{27} = -28082.7841967955$$
$$x_{28} = 18508.3740693236$$
$$x_{29} = -13662.3111537713$$
$$x_{30} = 15962.9433744742$$
$$x_{31} = 19356.6975786082$$
$$x_{32} = -42495.6787419334$$
$$x_{33} = 17659.98125465$$
$$x_{34} = 26141.6018297931$$
$$x_{35} = -37409.0926076118$$
$$x_{36} = -26386.8904367904$$
$$x_{37} = 15114.2699012415$$
$$x_{38} = 26989.5706604141$$
$$x_{39} = 32076.9780535409$$
$$x_{40} = 13416.5158347575$$
$$x_{41} = 14265.4688181336$$
$$x_{42} = -34865.6947367114$$
$$x_{43} = 21053.170272419$$
$$x_{44} = 33772.6609857318$$
$$x_{45} = -21298.5578401124$$
$$x_{46} = -28930.7010654888$$
$$x_{47} = 30381.2420413359$$
$$x_{48} = 40554.9952948154$$
$$x_{49} = -24690.9029674231$$
$$x_{50} = 38011.6827902157$$
$$x_{51} = 23597.5377045074$$
$$x_{52} = 36316.1021534947$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[36316.1021534947, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, -42495.6787419334\right]$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty} \sqrt[3]{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)} = \infty \sqrt[3]{-6}$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
$$y = \infty \sqrt[3]{-6}$$
$$\lim_{x \to \infty} \sqrt[3]{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)} = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función (((2*x + 2)*(x - 2))*(3*x - 2))^(1/3), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\sqrt[3]{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)}}{x}\right) = - \sqrt[3]{-6}$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
$$y = - \sqrt[3]{-6} x$$
$$\lim_{x \to \infty}\left(\frac{\sqrt[3]{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)}}{x}\right) = \sqrt[3]{6}$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
$$y = \sqrt[3]{6} x$$
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\sqrt[3]{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)} = \sqrt[3]{\left(2 - 2 x\right) \left(- 3 x - 2\right) \left(- x - 2\right)}$$
- No
$$\sqrt[3]{\left(x - 2\right) \left(2 x + 2\right) \left(3 x - 2\right)} = - \sqrt[3]{\left(2 - 2 x\right) \left(- 3 x - 2\right) \left(- x - 2\right)}$$
- No
es decir, función
no es
par ni impar