Sr Examen

Gráfico de la función y = arctg(x)+5

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
f(x) = atan(x) + 5
$$f{\left(x \right)} = \operatorname{atan}{\left(x \right)} + 5$$
f = atan(x) + 5
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\operatorname{atan}{\left(x \right)} + 5 = 0$$
Resolvermos esta ecuación
Solución no hallada,
puede ser que el gráfico no cruce el eje X
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en atan(x) + 5.
$$\operatorname{atan}{\left(0 \right)} + 5$$
Resultado:
$$f{\left(0 \right)} = 5$$
Punto:
(0, 5)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$\frac{1}{x^{2} + 1} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga extremos
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$- \frac{2 x}{\left(x^{2} + 1\right)^{2}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 0$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left(-\infty, 0\right]$$
Convexa en los intervalos
$$\left[0, \infty\right)$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\operatorname{atan}{\left(x \right)} + 5\right) = 5 - \frac{\pi}{2}$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
$$y = 5 - \frac{\pi}{2}$$
$$\lim_{x \to \infty}\left(\operatorname{atan}{\left(x \right)} + 5\right) = \frac{\pi}{2} + 5$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
$$y = \frac{\pi}{2} + 5$$
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función atan(x) + 5, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\operatorname{atan}{\left(x \right)} + 5}{x}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
$$\lim_{x \to \infty}\left(\frac{\operatorname{atan}{\left(x \right)} + 5}{x}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\operatorname{atan}{\left(x \right)} + 5 = 5 - \operatorname{atan}{\left(x \right)}$$
- No
$$\operatorname{atan}{\left(x \right)} + 5 = \operatorname{atan}{\left(x \right)} - 5$$
- No
es decir, función
no es
par ni impar