Sr Examen

Ecuación diferencial y''-4y'+4y=(e^(4x)ln(x))/x

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Para el problema de Cauchy:

y() =
y'() =
y''() =
y'''() =
y''''() =

Gráfico:

interior superior

Solución

Ha introducido [src]
                          2          4*x       
    d                    d          e   *log(x)
- 4*--(y(x)) + 4*y(x) + ---(y(x)) = -----------
    dx                    2              x     
                        dx                     
$$4 y{\left(x \right)} - 4 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = \frac{e^{4 x} \log{\left(x \right)}}{x}$$
4*y - 4*y' + y'' = exp(4*x)*log(x)/x
Solución detallada
Tenemos la ecuación:
$$4 y{\left(x \right)} - 4 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = \frac{e^{4 x} \log{\left(x \right)}}{x}$$
Esta ecuación diferencial tiene la forma:
y'' + p*y' + q*y = s,

donde
$$p = -4$$
$$q = 4$$
$$s = - \frac{e^{4 x} \log{\left(x \right)}}{x}$$
Se llama lineal heterogénea
ecuación diferencial de 2 orden con factores constantes.
No hay mucha dificultad en la resolución de esta ecuación
Primero resolvamos la ecuación lineal homogénea correspondiente
y'' + p*y' + q*y = 0

Primero hallemos las raíces de la ecuación característica
$$q + \left(k^{2} + k p\right) = 0$$
En nuestro caso la ecuación característica va a tener la forma:
$$k^{2} - 4 k + 4 = 0$$
Solución detallada de una ecuación simple
- es una ecuación cuadrática simple
La raíz de esta ecuación es:
$$k_{1} = 2$$
Como la raíz de la ecuación característica es única,
y no tiene una forma compleja, entonces
la solución de la ecuación diferencial correspondiente tiene la forma:
$$y{\left(x \right)} = e^{k_{1} x} C_{1} + e^{k_{1} x} C_{2} x$$
Sustituyamos $$k_{1} = 2$$
$$y{\left(x \right)} = C_{1} e^{2 x} + C_{2} x e^{2 x}$$

Hemos encontrado la solución de la ecuación homogénea correspondiente
Ahora hay que resolver nuestra ecuación heterogénea
y'' + p*y' + q*y = s

Usamos el método de variación de la constante arbitraria
Consideremos que C1 y C2 son funciones de x

Y la solución general será:
$$y{\left(x \right)} = x \operatorname{C_{2}}{\left(x \right)} e^{2 x} + \operatorname{C_{1}}{\left(x \right)} e^{2 x}$$
donde C1(x) y C2(x)
según el método de variación de constantes hallemos del sistema:
$$\operatorname{y_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \operatorname{y_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{1}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{2}}{\left(x \right)} = f{\left(x \right)}$$
donde
y1(x) y y2(x) son soluciones parciales linealmente independientes de la ecuación diferencial lineal homogénea,
y1(x) = exp(2*x) (C1=1, C2=0),
y2(x) = x*exp(2*x) (C1=0, C2=1).
A es un término independiente f = - s, o
$$f{\left(x \right)} = \frac{e^{4 x} \log{\left(x \right)}}{x}$$
Es decir, el sistema tendrá la forma:
$$x e^{2 x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + e^{2 x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 0$$
$$\frac{d}{d x} x e^{2 x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} e^{2 x} = \frac{e^{4 x} \log{\left(x \right)}}{x}$$
o
$$x e^{2 x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + e^{2 x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 0$$
$$\left(2 x e^{2 x} + e^{2 x}\right) \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + 2 e^{2 x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = \frac{e^{4 x} \log{\left(x \right)}}{x}$$
Resolvamos este sistema:
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = - e^{2 x} \log{\left(x \right)}$$
$$\frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = \frac{e^{2 x} \log{\left(x \right)}}{x}$$
- son ecuaciones diferenciales simples, resolvámoslas
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \int \left(- e^{2 x} \log{\left(x \right)}\right)\, dx$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + \int \frac{e^{2 x} \log{\left(x \right)}}{x}\, dx$$
o
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} - \frac{e^{2 x} \log{\left(x \right)}}{2} + \frac{\operatorname{Ei}{\left(2 x \right)}}{2}$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} - \begin{cases} 2 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {2 x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(2 \right)} \log{\left(x \right)} & \text{for}\: \left|{x}\right| < 1 \\2 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {2 x} \right)} + i \pi \log{\left(\frac{1}{x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(2 \right)} \log{\left(x \right)} + i \pi \log{\left(x \right)} & \text{for}\: \frac{1}{\left|{x}\right|} < 1 \\2 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {2 x} \right)} + i \pi {G_{2, 2}^{2, 0}\left(\begin{matrix} & 1, 1 \\0, 0 & \end{matrix} \middle| {x} \right)} - i \pi {G_{2, 2}^{0, 2}\left(\begin{matrix} 1, 1 & \\ & 0, 0 \end{matrix} \middle| {x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(2 \right)} \log{\left(x \right)} + i \pi \log{\left(x \right)} & \text{otherwise} \end{cases} + \log{\left(x \right)} \operatorname{Ei}{\left(2 x \right)}$$
Sustituyamos C1(x) y C2(x) hallados en
$$y{\left(x \right)} = x \operatorname{C_{2}}{\left(x \right)} e^{2 x} + \operatorname{C_{1}}{\left(x \right)} e^{2 x}$$
Entonces la respuesta definitiva es:
$$y{\left(x \right)} = C_{3} e^{2 x} + C_{4} x e^{2 x} - x \left(\begin{cases} 2 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {2 x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(2 \right)} \log{\left(x \right)} & \text{for}\: \left|{x}\right| < 1 \\2 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {2 x} \right)} + i \pi \log{\left(\frac{1}{x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(2 \right)} \log{\left(x \right)} + i \pi \log{\left(x \right)} & \text{for}\: \frac{1}{\left|{x}\right|} < 1 \\2 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {2 x} \right)} + i \pi {G_{2, 2}^{2, 0}\left(\begin{matrix} & 1, 1 \\0, 0 & \end{matrix} \middle| {x} \right)} - i \pi {G_{2, 2}^{0, 2}\left(\begin{matrix} 1, 1 & \\ & 0, 0 \end{matrix} \middle| {x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(2 \right)} \log{\left(x \right)} + i \pi \log{\left(x \right)} & \text{otherwise} \end{cases}\right) e^{2 x} + x e^{2 x} \log{\left(x \right)} \operatorname{Ei}{\left(2 x \right)} - \frac{e^{4 x} \log{\left(x \right)}}{2} + \frac{e^{2 x} \operatorname{Ei}{\left(2 x \right)}}{2}$$
donde C3 y C4 hay son constantes
Respuesta [src]
       /                 /     //                                          2                                                _                                                                     \                 \              \     
       |                 |     ||                                       log (x)                                            |_  /1, 1, 1 |    \                                                    |                 |              |     
       |                 |     ||                                       ------- + EulerGamma*log(x) + log(2)*log(x) + 2*x* |   |        | 2*x|                                         for |x| < 1|                 |              |     
       |                 |     ||                                          2                                              3  3 \2, 2, 2 |    /                                                    |                 |              |     
       |                 |     ||                                                                                                                                                                 |                 |              |     
       |                 |     ||                            2                                                _                                                                                   |                 |    2*x       |     
       |     Ei(2*x)     |     ||                         log (x)                                            |_  /1, 1, 1 |    \                         /1\                                1     |                 |   e   *log(x)|  2*x
y(x) = |C1 + ------- + x*|C2 - |<                         ------- + EulerGamma*log(x) + log(2)*log(x) + 2*x* |   |        | 2*x| + pi*I*log(x) + pi*I*log|-|                           for --- < 1| + Ei(2*x)*log(x)| - -----------|*e   
       |        2        |     ||                            2                                              3  3 \2, 2, 2 |    /                         \x/                               |x|    |                 |        2     |     
       |                 |     ||                                                                                                                                                                 |                 |              |     
       |                 |     ||   2                                                _                                                                                                            |                 |              |     
       |                 |     ||log (x)                                            |_  /1, 1, 1 |    \                       __2, 0 /      1, 1 |  \         __0, 2 /1, 1       |  \             |                 |              |     
       |                 |     ||------- + EulerGamma*log(x) + log(2)*log(x) + 2*x* |   |        | 2*x| + pi*I*log(x) + pi*I*/__     |           | x| - pi*I*/__     |           | x|   otherwise |                 |              |     
       |                 |     ||   2                                              3  3 \2, 2, 2 |    /                      \_|2, 2 \0, 0       |  /        \_|2, 2 \      0, 0 |  /             |                 |              |     
       \                 \     \\                                                                                                                                                                 /                 /              /     
$$y{\left(x \right)} = \left(C_{1} + x \left(C_{2} - \begin{cases} 2 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {2 x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(2 \right)} \log{\left(x \right)} & \text{for}\: \left|{x}\right| < 1 \\2 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {2 x} \right)} + i \pi \log{\left(\frac{1}{x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(2 \right)} \log{\left(x \right)} + i \pi \log{\left(x \right)} & \text{for}\: \frac{1}{\left|{x}\right|} < 1 \\2 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {2 x} \right)} + i \pi {G_{2, 2}^{2, 0}\left(\begin{matrix} & 1, 1 \\0, 0 & \end{matrix} \middle| {x} \right)} - i \pi {G_{2, 2}^{0, 2}\left(\begin{matrix} 1, 1 & \\ & 0, 0 \end{matrix} \middle| {x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(2 \right)} \log{\left(x \right)} + i \pi \log{\left(x \right)} & \text{otherwise} \end{cases} + \log{\left(x \right)} \operatorname{Ei}{\left(2 x \right)}\right) - \frac{e^{2 x} \log{\left(x \right)}}{2} + \frac{\operatorname{Ei}{\left(2 x \right)}}{2}\right) e^{2 x}$$
Clasificación
nth linear constant coeff variation of parameters
nth linear constant coeff variation of parameters Integral