Sr Examen

Otras calculadoras

Gráfico de la función y = tan(x)*(x^3+4)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
              / 3    \
f(x) = tan(x)*\x  + 4/
f(x)=(x3+4)tan(x)f{\left(x \right)} = \left(x^{3} + 4\right) \tan{\left(x \right)}
f = (x^3 + 4)*tan(x)
Gráfico de la función
02468-8-6-4-2-1010-2500025000
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
(x3+4)tan(x)=0\left(x^{3} + 4\right) \tan{\left(x \right)} = 0
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
x1=0x_{1} = 0
x2=223x_{2} = - 2^{\frac{2}{3}}
x3=πx_{3} = \pi
Solución numérica
x1=40.8407044966673x_{1} = 40.8407044966673
x2=0x_{2} = 0
x3=18.8495559215388x_{3} = -18.8495559215388
x4=56.5486677646163x_{4} = -56.5486677646163
x5=97.3893722612836x_{5} = 97.3893722612836
x6=34.5575191894877x_{6} = 34.5575191894877
x7=53.4070751110265x_{7} = 53.4070751110265
x8=47.1238898038469x_{8} = 47.1238898038469
x9=97.3893722612836x_{9} = -97.3893722612836
x10=62.8318530717959x_{10} = 62.8318530717959
x11=87.9645943005142x_{11} = 87.9645943005142
x12=43.9822971502571x_{12} = 43.9822971502571
x13=37.6991118430775x_{13} = 37.6991118430775
x14=21.9911485751286x_{14} = -21.9911485751286
x15=3.14159265358979x_{15} = 3.14159265358979
x16=65.9734457253857x_{16} = 65.9734457253857
x17=69.1150383789755x_{17} = 69.1150383789755
x18=50.2654824574367x_{18} = -50.2654824574367
x19=94.2477796076938x_{19} = -94.2477796076938
x20=75.398223686155x_{20} = -75.398223686155
x21=53.4070751110265x_{21} = -53.4070751110265
x22=12.5663706143592x_{22} = 12.5663706143592
x23=9.42477796076938x_{23} = -9.42477796076938
x24=34.5575191894877x_{24} = -34.5575191894877
x25=21.9911485751286x_{25} = 21.9911485751286
x26=47.1238898038469x_{26} = -47.1238898038469
x27=43.9822971502571x_{27} = -43.9822971502571
x28=28.2743338823081x_{28} = 28.2743338823081
x29=31.4159265358979x_{29} = -31.4159265358979
x30=3.14159265358979x_{30} = -3.14159265358979
x31=6.28318530717959x_{31} = -6.28318530717959
x32=25.1327412287183x_{32} = -25.1327412287183
x33=62.8318530717959x_{33} = -62.8318530717959
x34=31.4159265358979x_{34} = 31.4159265358979
x35=65.9734457253857x_{35} = -65.9734457253857
x36=72.2566310325652x_{36} = 72.2566310325652
x37=59.6902604182061x_{37} = -59.6902604182061
x38=94.2477796076938x_{38} = 94.2477796076938
x39=81.6814089933346x_{39} = 81.6814089933346
x40=91.106186954104x_{40} = -91.106186954104
x41=100.530964914873x_{41} = -100.530964914873
x42=59.6902604182061x_{42} = 59.6902604182061
x43=40.8407044966673x_{43} = -40.8407044966673
x44=91.106186954104x_{44} = 91.106186954104
x45=78.5398163397448x_{45} = 78.5398163397448
x46=12.5663706143592x_{46} = -12.5663706143592
x47=56.5486677646163x_{47} = 56.5486677646163
x48=84.8230016469244x_{48} = 84.8230016469244
x49=100.530964914873x_{49} = 100.530964914873
x50=69.1150383789755x_{50} = -69.1150383789755
x51=9.42477796076938x_{51} = 9.42477796076938
x52=84.8230016469244x_{52} = -84.8230016469244
x53=78.5398163397448x_{53} = -78.5398163397448
x54=87.9645943005142x_{54} = -87.9645943005142
x55=81.6814089933346x_{55} = -81.6814089933346
x56=15.707963267949x_{56} = 15.707963267949
x57=28.2743338823081x_{57} = -28.2743338823081
x58=15.707963267949x_{58} = -15.707963267949
x59=37.6991118430775x_{59} = -37.6991118430775
x60=18.8495559215388x_{60} = 18.8495559215388
x61=25.1327412287183x_{61} = 25.1327412287183
x62=50.2654824574367x_{62} = 50.2654824574367
x63=72.2566310325652x_{63} = -72.2566310325652
x64=75.398223686155x_{64} = 75.398223686155
x65=6.28318530717959x_{65} = 6.28318530717959
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en tan(x)*(x^3 + 4).
(03+4)tan(0)\left(0^{3} + 4\right) \tan{\left(0 \right)}
Resultado:
f(0)=0f{\left(0 \right)} = 0
Punto:
(0, 0)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
primera derivada
3x2tan(x)+(x3+4)(tan2(x)+1)=03 x^{2} \tan{\left(x \right)} + \left(x^{3} + 4\right) \left(\tan^{2}{\left(x \right)} + 1\right) = 0
Resolvermos esta ecuación
Raíces de esta ecuación
x1=2.25591822648023x_{1} = -2.25591822648023
Signos de extremos en los puntos:
(-2.255918226480234, -9.15447623193578)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
x1=2.25591822648023x_{1} = -2.25591822648023
La función no tiene puntos máximos
Decrece en los intervalos
[2.25591822648023,)\left[-2.25591822648023, \infty\right)
Crece en los intervalos
(,2.25591822648023]\left(-\infty, -2.25591822648023\right]
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
segunda derivada
2(3x2(tan2(x)+1)+3xtan(x)+(x3+4)(tan2(x)+1)tan(x))=02 \left(3 x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) + 3 x \tan{\left(x \right)} + \left(x^{3} + 4\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}\right) = 0
Resolvermos esta ecuación
Raíces de esta ecuación
x1=31.3207337085427x_{1} = 31.3207337085427
x2=18.691809003885x_{2} = 18.691809003885
x3=50.2058718640859x_{3} = 50.2058718640859
x4=28.1686058440378x_{4} = -28.1686058440378
x5=62.7841435647935x_{5} = 62.7841435647935
x6=2.48461039011352x_{6} = 2.48461039011352
x7=40.7673841393951x_{7} = 40.7673841393951
x8=69.0716591716208x_{8} = -69.0716591716208
x9=21.8556132276471x_{9} = 21.8556132276471
x10=69.0716602233947x_{10} = 69.0716602233947
x11=100.501132096352x_{11} = -100.501132096352
x12=47.0603159403079x_{12} = 47.0603159403079
x13=65.9280035333118x_{13} = -65.9280035333118
x14=59.640042236382x_{14} = -59.640042236382
x15=56.4956669310095x_{15} = 56.4956669310095
x16=75.3584555451937x_{16} = -75.3584555451937
x17=97.3585779468624x_{17} = 97.3585779468624
x18=62.784142024889x_{18} = -62.784142024889
x19=59.6400441269827x_{19} = 59.6400441269827
x20=18.6916187878568x_{20} = -18.6916187878568
x21=91.0732704087587x_{21} = 91.0732704087587
x22=31.320709068384x_{22} = -31.320709068384
x23=43.9141900064125x_{23} = -43.9141900064125
x24=78.5016373896593x_{24} = -78.5016373896593
x25=72.2151357298745x_{25} = -72.2151357298745
x26=5.82774384096051x_{26} = -5.82774384096051
x27=15.5194208026972x_{27} = 15.5194208026972
x28=43.9141964201018x_{28} = 43.9141964201018
x29=9.11476902458686x_{29} = -9.11476902458686
x30=94.2159595115209x_{30} = 94.2159595115209
x31=87.9305026777509x_{31} = -87.9305026777509
x32=87.9305030785993x_{32} = 87.9305030785993
x33=53.3509602105693x_{33} = -53.3509602105693
x34=53.3509631605549x_{34} = 53.3509631605549
x35=75.3584562878156x_{35} = 75.3584562878156
x36=9.1178357254917x_{36} = 9.1178357254917
x37=65.9280048001939x_{37} = 65.9280048001939
x38=100.501132331322x_{38} = 100.501132331322
x39=15.5190261420429x_{39} = -15.5190261420429
x40=25.0139044407929x_{40} = -25.0139044407929
x41=78.5016380204025x_{41} = 78.5016380204025
x42=56.4956645839463x_{42} = -56.4956645839463
x43=94.2159592073433x_{43} = -94.2159592073433
x44=12.3324290989345x_{44} = 12.3324290989345
x45=25.0139646037045x_{45} = 25.0139646037045
x46=40.7673755125995x_{46} = -40.7673755125995
x47=34.4709155461949x_{47} = -34.4709155461949
x48=5.84372331689625x_{48} = 5.84372331689625
x49=50.2058681045286x_{49} = -50.2058681045286
x50=34.4709323753665x_{50} = 34.4709323753665
x51=97.358577680075x_{51} = -97.358577680075
x52=91.0732700604052x_{52} = -91.0732700604052
x53=84.787648843337x_{53} = 84.787648843337
x54=84.7876483797222x_{54} = -84.7876483797222
x55=37.6196954213083x_{55} = -37.6196954213083
x56=37.6197073036526x_{56} = 37.6197073036526
x57=81.6446976931462x_{57} = 81.6446976931462
x58=21.8555105796806x_{58} = -21.8555105796806
x59=81.6446971539845x_{59} = -81.6446971539845
x60=0x_{60} = 0
x61=72.2151366103182x_{61} = 72.2151366103182
x62=28.1686434009589x_{62} = 28.1686434009589
x63=12.3314640569818x_{63} = -12.3314640569818
x64=47.0603110734012x_{64} = -47.0603110734012

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
[100.501132331322,)\left[100.501132331322, \infty\right)
Convexa en los intervalos
[5.82774384096051,0]\left[-5.82774384096051, 0\right]
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
True

Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
y=limx((x3+4)tan(x))y = \lim_{x \to -\infty}\left(\left(x^{3} + 4\right) \tan{\left(x \right)}\right)
True

Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
y=limx((x3+4)tan(x))y = \lim_{x \to \infty}\left(\left(x^{3} + 4\right) \tan{\left(x \right)}\right)
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función tan(x)*(x^3 + 4), dividida por x con x->+oo y x ->-oo
True

Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
y=xlimx((x3+4)tan(x)x)y = x \lim_{x \to -\infty}\left(\frac{\left(x^{3} + 4\right) \tan{\left(x \right)}}{x}\right)
True

Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
y=xlimx((x3+4)tan(x)x)y = x \lim_{x \to \infty}\left(\frac{\left(x^{3} + 4\right) \tan{\left(x \right)}}{x}\right)
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
(x3+4)tan(x)=(4x3)tan(x)\left(x^{3} + 4\right) \tan{\left(x \right)} = - \left(4 - x^{3}\right) \tan{\left(x \right)}
- No
(x3+4)tan(x)=(4x3)tan(x)\left(x^{3} + 4\right) \tan{\left(x \right)} = \left(4 - x^{3}\right) \tan{\left(x \right)}
- No
es decir, función
no es
par ni impar