Sr Examen

Otras calculadoras

Gráfico de la función y = sqrt(1+(lnx)^2)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
          _____________
         /        2    
f(x) = \/  1 + log (x) 
$$f{\left(x \right)} = \sqrt{\log{\left(x \right)}^{2} + 1}$$
f = sqrt(log(x)^2 + 1)
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\sqrt{\log{\left(x \right)}^{2} + 1} = 0$$
Resolvermos esta ecuación
Solución no hallada,
puede ser que el gráfico no cruce el eje X
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en sqrt(1 + log(x)^2).
$$\sqrt{\log{\left(0 \right)}^{2} + 1}$$
Resultado:
$$f{\left(0 \right)} = \tilde{\infty}$$
signof no cruza Y
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$\frac{\log{\left(x \right)}}{x \sqrt{\log{\left(x \right)}^{2} + 1}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 1$$
Signos de extremos en los puntos:
(1, 1)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = 1$$
La función no tiene puntos máximos
Decrece en los intervalos
$$\left[1, \infty\right)$$
Crece en los intervalos
$$\left(-\infty, 1\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{- \log{\left(x \right)} + 1 - \frac{\log{\left(x \right)}^{2}}{\log{\left(x \right)}^{2} + 1}}{x^{2} \sqrt{\log{\left(x \right)}^{2} + 1}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = e^{- \frac{1}{3 \sqrt[3]{\frac{1}{2} + \frac{\sqrt{93}}{18}}} + \sqrt[3]{\frac{1}{2} + \frac{\sqrt{93}}{18}}}$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left(-\infty, e^{- \frac{1}{3 \sqrt[3]{\frac{1}{2} + \frac{\sqrt{93}}{18}}} + \sqrt[3]{\frac{1}{2} + \frac{\sqrt{93}}{18}}}\right]$$
Convexa en los intervalos
$$\left[e^{- \frac{1}{3 \sqrt[3]{\frac{1}{2} + \frac{\sqrt{93}}{18}}} + \sqrt[3]{\frac{1}{2} + \frac{\sqrt{93}}{18}}}, \infty\right)$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty} \sqrt{\log{\left(x \right)}^{2} + 1} = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty} \sqrt{\log{\left(x \right)}^{2} + 1} = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función sqrt(1 + log(x)^2), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\sqrt{\log{\left(x \right)}^{2} + 1}}{x}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
$$\lim_{x \to \infty}\left(\frac{\sqrt{\log{\left(x \right)}^{2} + 1}}{x}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\sqrt{\log{\left(x \right)}^{2} + 1} = \sqrt{\log{\left(- x \right)}^{2} + 1}$$
- No
$$\sqrt{\log{\left(x \right)}^{2} + 1} = - \sqrt{\log{\left(- x \right)}^{2} + 1}$$
- No
es decir, función
no es
par ni impar