Sr Examen

Gráfico de la función y = ln(x)-arctan(x-1)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
f(x) = log(x) - atan(x - 1)
$$f{\left(x \right)} = \log{\left(x \right)} - \operatorname{atan}{\left(x - 1 \right)}$$
f = log(x) - atan(x - 1)
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\log{\left(x \right)} - \operatorname{atan}{\left(x - 1 \right)} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución numérica
$$x_{1} = 3.0633197374531$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en log(x) - atan(x - 1).
$$\log{\left(0 \right)} - \operatorname{atan}{\left(-1 \right)}$$
Resultado:
$$f{\left(0 \right)} = \tilde{\infty}$$
signof no cruza Y
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$- \frac{1}{\left(x - 1\right)^{2} + 1} + \frac{1}{x} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 1$$
$$x_{2} = 2$$
Signos de extremos en los puntos:
(1, 0)

      pi          
(2, - -- + log(2))
      4           


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = 2$$
Puntos máximos de la función:
$$x_{1} = 1$$
Decrece en los intervalos
$$\left(-\infty, 1\right] \cup \left[2, \infty\right)$$
Crece en los intervalos
$$\left[1, 2\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{2 \left(x - 1\right)}{\left(\left(x - 1\right)^{2} + 1\right)^{2}} - \frac{1}{x^{2}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = \frac{\sqrt{5}}{2} + \sqrt{\frac{1}{2} + \frac{\sqrt{5}}{2}} + \frac{3}{2}$$
$$x_{2} = - \sqrt{\frac{1}{2} + \frac{\sqrt{5}}{2}} + \frac{\sqrt{5}}{2} + \frac{3}{2}$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[- \sqrt{\frac{1}{2} + \frac{\sqrt{5}}{2}} + \frac{\sqrt{5}}{2} + \frac{3}{2}, \frac{\sqrt{5}}{2} + \sqrt{\frac{1}{2} + \frac{\sqrt{5}}{2}} + \frac{3}{2}\right]$$
Convexa en los intervalos
$$\left(-\infty, - \sqrt{\frac{1}{2} + \frac{\sqrt{5}}{2}} + \frac{\sqrt{5}}{2} + \frac{3}{2}\right] \cup \left[\frac{\sqrt{5}}{2} + \sqrt{\frac{1}{2} + \frac{\sqrt{5}}{2}} + \frac{3}{2}, \infty\right)$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\log{\left(x \right)} - \operatorname{atan}{\left(x - 1 \right)}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(\log{\left(x \right)} - \operatorname{atan}{\left(x - 1 \right)}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función log(x) - atan(x - 1), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)} - \operatorname{atan}{\left(x - 1 \right)}}{x}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
$$\lim_{x \to \infty}\left(\frac{\log{\left(x \right)} - \operatorname{atan}{\left(x - 1 \right)}}{x}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\log{\left(x \right)} - \operatorname{atan}{\left(x - 1 \right)} = \log{\left(- x \right)} + \operatorname{atan}{\left(x + 1 \right)}$$
- No
$$\log{\left(x \right)} - \operatorname{atan}{\left(x - 1 \right)} = - \log{\left(- x \right)} - \operatorname{atan}{\left(x + 1 \right)}$$
- No
es decir, función
no es
par ni impar