Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada$$\frac{3 \sqrt[3]{x^{3} \left(3 \log{\left(x \right)} - 1\right)} \left(- \log{\left(x \right)} + 1 + \frac{3 \log{\left(x \right)}^{2}}{3 \log{\left(x \right)} - 1} - \frac{3 \log{\left(x \right)}}{3 \log{\left(x \right)} - 1}\right)}{x^{2} \left(3 \log{\left(x \right)} - 1\right)} = 0$$
Resolvermos esta ecuaciónRaíces de esta ecuación
$$x_{1} = e$$
Intervalos de convexidad y concavidad:Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[e, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, e\right]$$