Sr Examen

Ecuación diferencial y''-4*y'+29*y=104sin5x

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Para el problema de Cauchy:

y() =
y'() =
y''() =
y'''() =
y''''() =

Gráfico:

interior superior

Solución

Ha introducido [src]
                           2                     
    d                     d                      
- 4*--(y(x)) + 29*y(x) + ---(y(x)) = 104*sin(5*x)
    dx                     2                     
                         dx                      
$$29 y{\left(x \right)} - 4 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 104 \sin{\left(5 x \right)}$$
29*y - 4*y' + y'' = 104*sin(5*x)
Solución detallada
Tenemos la ecuación:
$$29 y{\left(x \right)} - 4 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 104 \sin{\left(5 x \right)}$$
Esta ecuación diferencial tiene la forma:
y'' + p*y' + q*y = s,

donde
$$p = -4$$
$$q = 29$$
$$s = - 104 \sin{\left(5 x \right)}$$
Se llama lineal heterogénea
ecuación diferencial de 2 orden con factores constantes.
No hay mucha dificultad en la resolución de esta ecuación
Primero resolvamos la ecuación lineal homogénea correspondiente
y'' + p*y' + q*y = 0

Primero hallemos las raíces de la ecuación característica
$$q + \left(k^{2} + k p\right) = 0$$
En nuestro caso la ecuación característica va a tener la forma:
$$k^{2} - 4 k + 29 = 0$$
Solución detallada de una ecuación simple
- es una ecuación cuadrática simple
Raíces de esta ecuación:
$$k_{1} = 2 - 5 i$$
$$k_{2} = 2 + 5 i$$
Como la ecuación característica tiene dos raíces,
la solución de la ecuación diferencial correspondiente tiene la forma:
$$y{\left(x \right)} = e^{k_{1} x} C_{1} + e^{k_{2} x} C_{2}$$
$$y{\left(x \right)} = C_{1} e^{x \left(2 - 5 i\right)} + C_{2} e^{x \left(2 + 5 i\right)}$$

Hemos encontrado la solución de la ecuación homogénea correspondiente
Ahora hay que resolver nuestra ecuación heterogénea
y'' + p*y' + q*y = s

Usamos el método de variación de la constante arbitraria
Consideremos que C1 y C2 son funciones de x

Y la solución general será:
$$y{\left(x \right)} = \operatorname{C_{1}}{\left(x \right)} e^{x \left(2 - 5 i\right)} + \operatorname{C_{2}}{\left(x \right)} e^{x \left(2 + 5 i\right)}$$
donde C1(x) y C2(x)
según el método de variación de constantes hallemos del sistema:
$$\operatorname{y_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \operatorname{y_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{1}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{2}}{\left(x \right)} = f{\left(x \right)}$$
donde
y1(x) y y2(x) son soluciones parciales linealmente independientes de la ecuación diferencial lineal homogénea,
y1(x) = exp(x*(2 - 5*i)) (C1=1, C2=0),
y2(x) = exp(x*(2 + 5*i)) (C1=0, C2=1).
A es un término independiente f = - s, o
$$f{\left(x \right)} = 104 \sin{\left(5 x \right)}$$
Es decir, el sistema tendrá la forma:
$$e^{x \left(2 - 5 i\right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + e^{x \left(2 + 5 i\right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} e^{x \left(2 - 5 i\right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{d}{d x} e^{x \left(2 + 5 i\right)} = 104 \sin{\left(5 x \right)}$$
o
$$e^{x \left(2 - 5 i\right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + e^{x \left(2 + 5 i\right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\left(2 - 5 i\right) e^{x \left(2 - 5 i\right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \left(2 + 5 i\right) e^{x \left(2 + 5 i\right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 104 \sin{\left(5 x \right)}$$
Resolvamos este sistema:
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = \frac{52 i e^{x \left(-2 + 5 i\right)} \sin{\left(5 x \right)}}{5}$$
$$\frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = - \frac{52 i e^{- x \left(2 + 5 i\right)} \sin{\left(5 x \right)}}{5}$$
- son ecuaciones diferenciales simples, resolvámoslas
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \int \frac{52 i e^{x \left(-2 + 5 i\right)} \sin{\left(5 x \right)}}{5}\, dx$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + \int \left(- \frac{52 i e^{- x \left(2 + 5 i\right)} \sin{\left(5 x \right)}}{5}\right)\, dx$$
o
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \frac{52 i \left(- \frac{27 e^{- 2 x} e^{5 i x} \sin{\left(5 x \right)}}{104} - \frac{5 i e^{- 2 x} e^{5 i x} \sin{\left(5 x \right)}}{104} - \frac{5 e^{- 2 x} e^{5 i x} \cos{\left(5 x \right)}}{104} - \frac{25 i e^{- 2 x} e^{5 i x} \cos{\left(5 x \right)}}{104}\right)}{5}$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} - \frac{52 i \left(- \frac{27 e^{- 2 x} e^{- 5 i x} \sin{\left(5 x \right)}}{104} + \frac{5 i e^{- 2 x} e^{- 5 i x} \sin{\left(5 x \right)}}{104} - \frac{5 e^{- 2 x} e^{- 5 i x} \cos{\left(5 x \right)}}{104} + \frac{25 i e^{- 2 x} e^{- 5 i x} \cos{\left(5 x \right)}}{104}\right)}{5}$$
Sustituyamos C1(x) y C2(x) hallados en
$$y{\left(x \right)} = \operatorname{C_{1}}{\left(x \right)} e^{x \left(2 - 5 i\right)} + \operatorname{C_{2}}{\left(x \right)} e^{x \left(2 + 5 i\right)}$$
Entonces la respuesta definitiva es:
$$y{\left(x \right)} = C_{3} e^{2 x} e^{- 5 i x} + C_{4} e^{2 x} e^{5 i x} + \sin{\left(5 x \right)} + 5 \cos{\left(5 x \right)}$$
donde C3 y C4 hay son constantes
Respuesta [src]
                                                 2*x           
y(x) = 5*cos(5*x) + (C1*sin(5*x) + C2*cos(5*x))*e    + sin(5*x)
$$y{\left(x \right)} = \left(C_{1} \sin{\left(5 x \right)} + C_{2} \cos{\left(5 x \right)}\right) e^{2 x} + \sin{\left(5 x \right)} + 5 \cos{\left(5 x \right)}$$
Clasificación
nth linear constant coeff undetermined coefficients
nth linear constant coeff variation of parameters
nth linear constant coeff variation of parameters Integral