Tenemos la ecuación
$$\sqrt{x + 4} + \sqrt{2 x + 7} = \sqrt{6 x + 18}$$
Elevemos las dos partes de la ecuación a la potencia 2
$$\left(\sqrt{x + 4} + \sqrt{2 x + 7}\right)^{2} = 6 x + 18$$
o
$$1^{2} \left(2 x + 7\right) + \left(2 \sqrt{\left(x + 4\right) \left(2 x + 7\right)} + 1^{2} \left(x + 4\right)\right) = 6 x + 18$$
o
$$3 x + 2 \sqrt{2 x^{2} + 15 x + 28} + 11 = 6 x + 18$$
cambiamos:
$$2 \sqrt{2 x^{2} + 15 x + 28} = 3 x + 7$$
Elevemos las dos partes de la ecuación a la potencia 2
$$8 x^{2} + 60 x + 112 = \left(3 x + 7\right)^{2}$$
$$8 x^{2} + 60 x + 112 = 9 x^{2} + 42 x + 49$$
Transpongamos la parte derecha de la ecuación miembro izquierdo de la ecuación con el signo negativo
$$- x^{2} + 18 x + 63 = 0$$
Es la ecuación de la forma
a*x^2 + b*x + c = 0
La ecuación cuadrática puede ser resuelta
con la ayuda del discriminante.
Las raíces de la ecuación cuadrática:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
donde D = b^2 - 4*a*c es el discriminante.
Como
$$a = -1$$
$$b = 18$$
$$c = 63$$
, entonces
D = b^2 - 4 * a * c =
(18)^2 - 4 * (-1) * (63) = 576
Como D > 0 la ecuación tiene dos raíces.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
o
$$x_{1} = -3$$
$$x_{2} = 21$$
Como
$$\sqrt{2 x^{2} + 15 x + 28} = \frac{3 x}{2} + \frac{7}{2}$$
y
$$\sqrt{2 x^{2} + 15 x + 28} \geq 0$$
entonces
$$\frac{3 x}{2} + \frac{7}{2} \geq 0$$
o
$$- \frac{7}{3} \leq x$$
$$x < \infty$$
$$x_{2} = 21$$
comprobamos:
$$x_{1} = 21$$
$$\sqrt{x_{1} + 4} + \sqrt{2 x_{1} + 7} - \sqrt{6 x_{1} + 18} = 0$$
=
$$- \sqrt{18 + 6 \cdot 21} + \left(\sqrt{4 + 21} + \sqrt{7 + 2 \cdot 21}\right) = 0$$
=
0 = 0
- la igualdad
Entonces la respuesta definitiva es:
$$x_{1} = 21$$