Sr Examen

Gráfico de la función y = x-arcctg(2*x)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
f(x) = x - acot(2*x)
$$f{\left(x \right)} = x - \operatorname{acot}{\left(2 x \right)}$$
f = x - acot(2*x)
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$x - \operatorname{acot}{\left(2 x \right)} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución numérica
$$x_{1} = -0.653271187094403$$
$$x_{2} = 0.653271187094403$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en x - acot(2*x).
$$- \operatorname{acot}{\left(0 \cdot 2 \right)}$$
Resultado:
$$f{\left(0 \right)} = - \frac{\pi}{2}$$
Punto:
(0, -pi/2)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$1 + \frac{2}{4 x^{2} + 1} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga extremos
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$- \frac{16 x}{\left(4 x^{2} + 1\right)^{2}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 0$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left(-\infty, 0\right]$$
Convexa en los intervalos
$$\left[0, \infty\right)$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(x - \operatorname{acot}{\left(2 x \right)}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(x - \operatorname{acot}{\left(2 x \right)}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función x - acot(2*x), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{x - \operatorname{acot}{\left(2 x \right)}}{x}\right) = 1$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
$$y = x$$
$$\lim_{x \to \infty}\left(\frac{x - \operatorname{acot}{\left(2 x \right)}}{x}\right) = 1$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
$$y = x$$
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$x - \operatorname{acot}{\left(2 x \right)} = - x + \operatorname{acot}{\left(2 x \right)}$$
- No
$$x - \operatorname{acot}{\left(2 x \right)} = x - \operatorname{acot}{\left(2 x \right)}$$
- Sí
es decir, función
es
impar