Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada$$\frac{\left(\frac{x}{x - 1} - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right)}{x \log{\left(e^{1} \right)}} = 0$$
Resolvermos esta ecuaciónRaíces de esta ecuación
$$x_{1} = \frac{1}{2}$$
Además hay que calcular los límites de y'' para los argumentos tendientes a los puntos de indeterminación de la función:
Puntos donde hay indeterminación:
$$x_{1} = 1$$
$$\lim_{x \to 1^-}\left(\frac{\left(\frac{x}{x - 1} - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right)}{x \log{\left(e^{1} \right)}}\right) = \infty$$
$$\lim_{x \to 1^+}\left(\frac{\left(\frac{x}{x - 1} - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right)}{x \log{\left(e^{1} \right)}}\right) = \infty$$
- los límites son iguales, es decir omitimos el punto correspondiente
Intervalos de convexidad y concavidad:Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[\frac{1}{2}, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, \frac{1}{2}\right]$$