Sr Examen

Otras calculadoras

Gráfico de la función y = sin(100*x^2)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
          /     2\
f(x) = sin\100*x /
f(x)=sin(100x2)f{\left(x \right)} = \sin{\left(100 x^{2} \right)}
f = sin(100*x^2)
Gráfico de la función
02468-8-6-4-2-10102-2
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
sin(100x2)=0\sin{\left(100 x^{2} \right)} = 0
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
x1=0x_{1} = 0
x2=π10x_{2} = - \frac{\sqrt{\pi}}{10}
x3=π10x_{3} = \frac{\sqrt{\pi}}{10}
Solución numérica
x1=2.40427337934047x_{1} = 2.40427337934047
x2=99.753255520343x_{2} = 99.753255520343
x3=3.51822043867973x_{3} = -3.51822043867973
x4=15.9520846581496x_{4} = -15.9520846581496
x5=66.150057894197x_{5} = 66.150057894197
x6=40.7309740677497x_{6} = 40.7309740677497
x7=0.177245385090552x_{7} = 0.177245385090552
x8=0x_{8} = 0
x9=12.5005127330664x_{9} = -12.5005127330664
x10=80.0933436876695x_{10} = 80.0933436876695
x11=63.8080924579777x_{11} = -63.8080924579777
x12=17.4350367123602x_{12} = -17.4350367123602
x13=89.6109967250742x_{13} = 89.6109967250742
x14=48.2804196037126x_{14} = 48.2804196037126
x15=4.51541098038681x_{15} = -4.51541098038681
x16=10.0014154043465x_{16} = -10.0014154043465
x17=35.7552753373797x_{17} = -35.7552753373797
x18=67.2748395796497x_{18} = -67.2748395796497
x19=5.88924298154112x_{19} = -5.88924298154112
x20=19.7944294122291x_{20} = -19.7944294122291
x21=54.1785536901373x_{21} = 54.1785536901373
x22=60.1170256480073x_{22} = 60.1170256480073
x23=58.2609112748084x_{23} = 58.2609112748084
x24=15.8988221232843x_{24} = 15.8988221232843
x25=86.1682409081226x_{25} = 86.1682409081226
x26=58.4165403640856x_{26} = -58.4165403640856
x27=107.989578246042x_{27} = 107.989578246042
x28=38.5552512104263x_{28} = 38.5552512104263
x29=21.4056368400025x_{29} = 21.4056368400025
x30=10.5412585661045x_{30} = 10.5412585661045
x31=89.9717198600665x_{31} = -89.9717198600665
x32=27.6616396243666x_{32} = -27.6616396243666
x33=13.6823794066462x_{33} = -13.6823794066462
x34=38.1460729995857x_{34} = 38.1460729995857
x35=81.1162493059071x_{35} = 81.1162493059071
x36=44.3531564584174x_{36} = 44.3531564584174
x37=79.8283384405201x_{37} = -79.8283384405201
x38=55.6897553567737x_{38} = -55.6897553567737
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en sin(100*x^2).
sin(10002)\sin{\left(100 \cdot 0^{2} \right)}
Resultado:
f(0)=0f{\left(0 \right)} = 0
Punto:
(0, 0)
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
segunda derivada
200(200x2sin(100x2)+cos(100x2))=0200 \left(- 200 x^{2} \sin{\left(100 x^{2} \right)} + \cos{\left(100 x^{2} \right)}\right) = 0
Resolvermos esta ecuación
Raíces de esta ecuación
x1=0.501523850459134x_{1} = 0.501523850459134
x2=1.63412743674081x_{2} = -1.63412743674081
x3=40.3773390357895x_{3} = 40.3773390357895
x4=66.5827190277216x_{4} = -66.5827190277216
x5=8.37754024720964x_{5} = -8.37754024720964
x6=51.890232525566x_{6} = -51.890232525566
x7=70.1902914604021x_{7} = 70.1902914604021
x8=0.396733151576786x_{8} = 0.396733151576786
x9=57.8564341488037x_{9} = -57.8564341488037
x10=4.29797248825818x_{10} = 4.29797248825818
x11=0.252222528574782x_{11} = -0.252222528574782
x12=98.0625210414809x_{12} = 98.0625210414809
x13=12.1823165815246x_{13} = -12.1823165815246
x14=0.0808251932935767x_{14} = 0.0808251932935767
x15=44.0995636747569x_{15} = -44.0995636747569
x16=38.0920910288209x_{16} = -38.0920910288209
x17=6.03936189336432x_{17} = -6.03936189336432
x18=61.3117894170382x_{18} = 61.3117894170382
x19=28.629930829625x_{19} = 28.629930829625
x20=0.614103975852348x_{20} = 0.614103975852348
x21=27.6463031300259x_{21} = -27.6463031300259
x22=75.9601429393816x_{22} = -75.9601429393816
x23=97.3942021399359x_{23} = 97.3942021399359
x24=84.1913713437576x_{24} = 84.1913713437576
x25=7.74827957955422x_{25} = -7.74827957955422
x26=87.9558681460447x_{26} = -87.9558681460447
x27=41.8670708445068x_{27} = 41.8670708445068
x28=1.43995668873317x_{28} = 1.43995668873317
x29=10.5069294420426x_{29} = -10.5069294420426
x30=15.9086990156566x_{30} = 15.9086990156566
x31=3.07509336034558x_{31} = -3.07509336034558
x32=33.8775239392283x_{32} = -33.8775239392283
x33=87.2077915770333x_{33} = 87.2077915770333
x34=83.6695847100994x_{34} = -83.6695847100994
x35=61.8987478419768x_{35} = -61.8987478419768
x36=33.1657328555672x_{36} = -33.1657328555672
x37=25.4129337518492x_{37} = 25.4129337518492
x38=29.8041158711142x_{38} = 29.8041158711142
x39=2.91782829585631x_{39} = 2.91782829585631
x40=12.175867840124x_{40} = 12.175867840124
x41=2.97645710987263x_{41} = -2.97645710987263
x42=14.2050869898027x_{42} = 14.2050869898027
x43=14.4550104679849x_{43} = -14.4550104679849
x44=4.18314163492637x_{44} = 4.18314163492637
x45=31.9533662149335x_{45} = -31.9533662149335
x46=3.08529269162783x_{46} = -3.08529269162783
x47=99.9282067147198x_{47} = -99.9282067147198
x48=90.5274622863886x_{48} = -90.5274622863886
x49=15.3273709046358x_{49} = -15.3273709046358
x50=68.1929592673171x_{50} = -68.1929592673171
x51=14.7954782393319x_{51} = 14.7954782393319
x52=3.21982306652412x_{52} = 3.21982306652412
x53=59.8575274262147x_{53} = -59.8575274262147
x54=76.9869568961133x_{54} = 76.9869568961133

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
[98.0625210414809,)\left[98.0625210414809, \infty\right)
Convexa en los intervalos
(,90.5274622863886]\left(-\infty, -90.5274622863886\right]
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
limxsin(100x2)=1,1\lim_{x \to -\infty} \sin{\left(100 x^{2} \right)} = \left\langle -1, 1\right\rangle
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
y=1,1y = \left\langle -1, 1\right\rangle
limxsin(100x2)=1,1\lim_{x \to \infty} \sin{\left(100 x^{2} \right)} = \left\langle -1, 1\right\rangle
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
y=1,1y = \left\langle -1, 1\right\rangle
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función sin(100*x^2), dividida por x con x->+oo y x ->-oo
limx(sin(100x2)x)=0\lim_{x \to -\infty}\left(\frac{\sin{\left(100 x^{2} \right)}}{x}\right) = 0
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
limx(sin(100x2)x)=0\lim_{x \to \infty}\left(\frac{\sin{\left(100 x^{2} \right)}}{x}\right) = 0
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
sin(100x2)=sin(100x2)\sin{\left(100 x^{2} \right)} = \sin{\left(100 x^{2} \right)}
- Sí
sin(100x2)=sin(100x2)\sin{\left(100 x^{2} \right)} = - \sin{\left(100 x^{2} \right)}
- No
es decir, función
es
par