Sr Examen

Otras calculadoras:

Límite de la función (-Abs(-1+sin(2*x))+Abs(1+sin(2*x)))/tan(x)

cuando
v

Para puntos concretos:

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
     /-|-1 + sin(2*x)| + |1 + sin(2*x)|\
 lim |---------------------------------|
x->0+\              tan(x)             /
$$\lim_{x \to 0^+}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right)$$
Limit((-Abs(-1 + sin(2*x)) + Abs(1 + sin(2*x)))/tan(x), x, 0)
Método de l'Hopital
Tenemos la indeterminación de tipo
0/0,

tal que el límite para el numerador es
$$\lim_{x \to 0^+}\left(- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|\right) = 0$$
y el límite para el denominador es
$$\lim_{x \to 0^+} \tan{\left(x \right)} = 0$$
Vamos a probar las derivadas del numerador y denominador hasta eliminar la indeterminación.
$$\lim_{x \to 0^+}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|\right)}{\frac{d}{d x} \tan{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{2 \sin^{2}{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} - \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh^{2}{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \cosh^{2}{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \cos^{2}{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} - \frac{2 \sin^{2}{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} + \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh^{2}{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} - \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \cosh^{2}{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} + \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} - \frac{2 \cos^{2}{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} + \frac{2 \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} - 1}}{\tan^{2}{\left(x \right)} + 1}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{2 \sin^{2}{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} - \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh^{2}{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \cosh^{2}{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \cos^{2}{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} + 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} + 1} - \frac{2 \sin^{2}{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} + \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh^{2}{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} - \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \cosh^{2}{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} + \frac{2 \sin{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} - \frac{2 \cos^{2}{\left(2 \operatorname{re}{\left(x\right)} \right)} \sinh{\left(2 \operatorname{im}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\sin{\left(2 x \right)} - 1} + \frac{2 \cos{\left(2 \operatorname{re}{\left(x\right)} \right)} \cosh{\left(2 \operatorname{im}{\left(x\right)} \right)} \operatorname{sign}{\left(\sin{\left(2 x \right)} - 1 \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\sin{\left(2 x \right)} - 1}}{\tan^{2}{\left(x \right)} + 1}\right)$$
=
$$4$$
Como puedes ver, hemos aplicado el método de l'Hopital (utilizando la derivada del numerador y denominador) 1 vez (veces)
Gráfica
Otros límites con x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right) = 4$$
Más detalles con x→0 a la izquierda
$$\lim_{x \to 0^+}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right) = 4$$
$$\lim_{x \to \infty}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right)$$
Más detalles con x→oo
$$\lim_{x \to 1^-}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right) = \frac{2 \sin{\left(2 \right)}}{\tan{\left(1 \right)}}$$
Más detalles con x→1 a la izquierda
$$\lim_{x \to 1^+}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right) = \frac{2 \sin{\left(2 \right)}}{\tan{\left(1 \right)}}$$
Más detalles con x→1 a la derecha
$$\lim_{x \to -\infty}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right)$$
Más detalles con x→-oo
A la izquierda y a la derecha [src]
     /-|-1 + sin(2*x)| + |1 + sin(2*x)|\
 lim |---------------------------------|
x->0+\              tan(x)             /
$$\lim_{x \to 0^+}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right)$$
4
$$4$$
= 4
     /-|-1 + sin(2*x)| + |1 + sin(2*x)|\
 lim |---------------------------------|
x->0-\              tan(x)             /
$$\lim_{x \to 0^-}\left(\frac{- \left|{\sin{\left(2 x \right)} - 1}\right| + \left|{\sin{\left(2 x \right)} + 1}\right|}{\tan{\left(x \right)}}\right)$$
4
$$4$$
= 4
= 4
Respuesta rápida [src]
4
$$4$$
Respuesta numérica [src]
4.0
4.0