Sr Examen

Ecuación diferencial y''-y'+y=2sin(3x)

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Para el problema de Cauchy:

y() =
y'() =
y''() =
y'''() =
y''''() =

Gráfico:

interior superior

Solución

Ha introducido [src]
               2                          
  d           d                           
- --(y(x)) + ---(y(x)) + y(x) = 2*sin(3*x)
  dx           2                          
             dx                           
$$y{\left(x \right)} - \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 2 \sin{\left(3 x \right)}$$
y - y' + y'' = 2*sin(3*x)
Solución detallada
Tenemos la ecuación:
$$y{\left(x \right)} - \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 2 \sin{\left(3 x \right)}$$
Esta ecuación diferencial tiene la forma:
y'' + p*y' + q*y = s,

donde
$$p = -1$$
$$q = 1$$
$$s = - 2 \sin{\left(3 x \right)}$$
Se llama lineal heterogénea
ecuación diferencial de 2 orden con factores constantes.
No hay mucha dificultad en la resolución de esta ecuación
Primero resolvamos la ecuación lineal homogénea correspondiente
y'' + p*y' + q*y = 0

Primero hallemos las raíces de la ecuación característica
$$q + \left(k^{2} + k p\right) = 0$$
En nuestro caso la ecuación característica va a tener la forma:
$$k^{2} - k + 1 = 0$$
Solución detallada de una ecuación simple
- es una ecuación cuadrática simple
Raíces de esta ecuación:
$$k_{1} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
$$k_{2} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
Como la ecuación característica tiene dos raíces,
la solución de la ecuación diferencial correspondiente tiene la forma:
$$y{\left(x \right)} = e^{k_{1} x} C_{1} + e^{k_{2} x} C_{2}$$
$$y{\left(x \right)} = C_{1} e^{x \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)} + C_{2} e^{x \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)}$$

Hemos encontrado la solución de la ecuación homogénea correspondiente
Ahora hay que resolver nuestra ecuación heterogénea
y'' + p*y' + q*y = s

Usamos el método de variación de la constante arbitraria
Consideremos que C1 y C2 son funciones de x

Y la solución general será:
$$y{\left(x \right)} = \operatorname{C_{1}}{\left(x \right)} e^{x \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)} + \operatorname{C_{2}}{\left(x \right)} e^{x \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)}$$
donde C1(x) y C2(x)
según el método de variación de constantes hallemos del sistema:
$$\operatorname{y_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \operatorname{y_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{1}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{2}}{\left(x \right)} = f{\left(x \right)}$$
donde
y1(x) y y2(x) son soluciones parciales linealmente independientes de la ecuación diferencial lineal homogénea,
y1(x) = exp(x*(1/2 - sqrt(3)*i/2)) (C1=1, C2=0),
y2(x) = exp(x*(1/2 + sqrt(3)*i/2)) (C1=0, C2=1).
A es un término independiente f = - s, o
$$f{\left(x \right)} = 2 \sin{\left(3 x \right)}$$
Es decir, el sistema tendrá la forma:
$$e^{x \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + e^{x \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} e^{x \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{d}{d x} e^{x \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)} = 2 \sin{\left(3 x \right)}$$
o
$$e^{x \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + e^{x \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) e^{x \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right) e^{x \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 2 \sin{\left(3 x \right)}$$
Resolvamos este sistema:
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = \frac{2 \sqrt{3} i e^{\frac{x \left(-1 + \sqrt{3} i\right)}{2}} \sin{\left(3 x \right)}}{3}$$
$$\frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = - \frac{2 \sqrt{3} i e^{- \frac{x \left(1 + \sqrt{3} i\right)}{2}} \sin{\left(3 x \right)}}{3}$$
- son ecuaciones diferenciales simples, resolvámoslas
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \int \frac{2 \sqrt{3} i e^{\frac{x \left(-1 + \sqrt{3} i\right)}{2}} \sin{\left(3 x \right)}}{3}\, dx$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + \int \left(- \frac{2 \sqrt{3} i e^{- \frac{x \left(1 + \sqrt{3} i\right)}{2}} \sin{\left(3 x \right)}}{3}\right)\, dx$$
o
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \frac{2 \sqrt{3} i \left(- \frac{e^{\frac{\sqrt{3} i x}{2}} \sin{\left(3 x \right)}}{- 7 e^{\frac{x}{2}} + 9 \sqrt{3} i e^{\frac{x}{2}}} - \frac{\sqrt{3} i e^{\frac{\sqrt{3} i x}{2}} \sin{\left(3 x \right)}}{- 7 e^{\frac{x}{2}} + 9 \sqrt{3} i e^{\frac{x}{2}}} + \frac{3 e^{\frac{\sqrt{3} i x}{2}} \cos{\left(3 x \right)}}{- 7 e^{\frac{x}{2}} + 9 \sqrt{3} i e^{\frac{x}{2}}} - \frac{3 \sqrt{3} i e^{\frac{\sqrt{3} i x}{2}} \cos{\left(3 x \right)}}{- 7 e^{\frac{x}{2}} + 9 \sqrt{3} i e^{\frac{x}{2}}}\right)}{3}$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} - \frac{2 \sqrt{3} i \left(\frac{e^{\frac{x}{2}} e^{\frac{\sqrt{3} i x}{2}} \sin{\left(3 x \right)}}{7 e^{x} e^{\sqrt{3} i x} + 9 \sqrt{3} i e^{x} e^{\sqrt{3} i x}} - \frac{\sqrt{3} i e^{\frac{x}{2}} e^{\frac{\sqrt{3} i x}{2}} \sin{\left(3 x \right)}}{7 e^{x} e^{\sqrt{3} i x} + 9 \sqrt{3} i e^{x} e^{\sqrt{3} i x}} - \frac{3 e^{\frac{x}{2}} e^{\frac{\sqrt{3} i x}{2}} \cos{\left(3 x \right)}}{7 e^{x} e^{\sqrt{3} i x} + 9 \sqrt{3} i e^{x} e^{\sqrt{3} i x}} - \frac{3 \sqrt{3} i e^{\frac{x}{2}} e^{\frac{\sqrt{3} i x}{2}} \cos{\left(3 x \right)}}{7 e^{x} e^{\sqrt{3} i x} + 9 \sqrt{3} i e^{x} e^{\sqrt{3} i x}}\right)}{3}$$
Sustituyamos C1(x) y C2(x) hallados en
$$y{\left(x \right)} = \operatorname{C_{1}}{\left(x \right)} e^{x \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)} + \operatorname{C_{2}}{\left(x \right)} e^{x \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)}$$
Entonces la respuesta definitiva es:
$$y{\left(x \right)} = C_{3} e^{\frac{x}{2}} e^{- \frac{\sqrt{3} i x}{2}} + C_{4} e^{\frac{x}{2}} e^{\frac{\sqrt{3} i x}{2}} + \frac{2 e^{\frac{x}{2}} \sin{\left(3 x \right)}}{- 7 e^{\frac{x}{2}} + 9 \sqrt{3} i e^{\frac{x}{2}}} - \frac{2 \sqrt{3} i e^{\frac{x}{2}} \sin{\left(3 x \right)}}{3 \left(- 7 e^{\frac{x}{2}} + 9 \sqrt{3} i e^{\frac{x}{2}}\right)} + \frac{6 e^{\frac{x}{2}} \cos{\left(3 x \right)}}{- 7 e^{\frac{x}{2}} + 9 \sqrt{3} i e^{\frac{x}{2}}} + \frac{2 \sqrt{3} i e^{\frac{x}{2}} \cos{\left(3 x \right)}}{- 7 e^{\frac{x}{2}} + 9 \sqrt{3} i e^{\frac{x}{2}}} - \frac{2 e^{x} e^{\sqrt{3} i x} \sin{\left(3 x \right)}}{7 e^{x} e^{\sqrt{3} i x} + 9 \sqrt{3} i e^{x} e^{\sqrt{3} i x}} - \frac{2 \sqrt{3} i e^{x} e^{\sqrt{3} i x} \sin{\left(3 x \right)}}{3 \left(7 e^{x} e^{\sqrt{3} i x} + 9 \sqrt{3} i e^{x} e^{\sqrt{3} i x}\right)} - \frac{6 e^{x} e^{\sqrt{3} i x} \cos{\left(3 x \right)}}{7 e^{x} e^{\sqrt{3} i x} + 9 \sqrt{3} i e^{x} e^{\sqrt{3} i x}} + \frac{2 \sqrt{3} i e^{x} e^{\sqrt{3} i x} \cos{\left(3 x \right)}}{7 e^{x} e^{\sqrt{3} i x} + 9 \sqrt{3} i e^{x} e^{\sqrt{3} i x}}$$
donde C3 y C4 hay son constantes
Respuesta [src]
                                                                         x
                                    /      /    ___\         /    ___\\  -
         16*sin(3*x)   6*cos(3*x)   |      |x*\/ 3 |         |x*\/ 3 ||  2
y(x) = - ----------- + ---------- + |C1*sin|-------| + C2*cos|-------||*e 
              73           73       \      \   2   /         \   2   //   
$$y{\left(x \right)} = \left(C_{1} \sin{\left(\frac{\sqrt{3} x}{2} \right)} + C_{2} \cos{\left(\frac{\sqrt{3} x}{2} \right)}\right) e^{\frac{x}{2}} - \frac{16 \sin{\left(3 x \right)}}{73} + \frac{6 \cos{\left(3 x \right)}}{73}$$
Clasificación
nth linear constant coeff undetermined coefficients
nth linear constant coeff variation of parameters
nth linear constant coeff variation of parameters Integral