Sr Examen

Ecuación diferencial y"-2y'+y=xe^x

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Para el problema de Cauchy:

y() =
y'() =
y''() =
y'''() =
y''''() =

Gráfico:

interior superior

Solución

Ha introducido [src]
                 2                    
    d           d                    x
- 2*--(y(x)) + ---(y(x)) + y(x) = x*e 
    dx           2                    
               dx                     
$$y{\left(x \right)} - 2 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = x e^{x}$$
y - 2*y' + y'' = x*exp(x)
Solución detallada
Tenemos la ecuación:
$$y{\left(x \right)} - 2 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = x e^{x}$$
Esta ecuación diferencial tiene la forma:
y'' + p*y' + q*y = s,

donde
$$p = -2$$
$$q = 1$$
$$s = - x e^{x}$$
Se llama lineal heterogénea
ecuación diferencial de 2 orden con factores constantes.
No hay mucha dificultad en la resolución de esta ecuación
Primero resolvamos la ecuación lineal homogénea correspondiente
y'' + p*y' + q*y = 0

Primero hallemos las raíces de la ecuación característica
$$q + \left(k^{2} + k p\right) = 0$$
En nuestro caso la ecuación característica va a tener la forma:
$$k^{2} - 2 k + 1 = 0$$
Solución detallada de una ecuación simple
- es una ecuación cuadrática simple
La raíz de esta ecuación es:
$$k_{1} = 1$$
Como la raíz de la ecuación característica es única,
y no tiene una forma compleja, entonces
la solución de la ecuación diferencial correspondiente tiene la forma:
$$y{\left(x \right)} = e^{k_{1} x} C_{1} + e^{k_{1} x} C_{2} x$$
Sustituyamos $$k_{1} = 1$$
$$y{\left(x \right)} = C_{1} e^{x} + C_{2} x e^{x}$$

Hemos encontrado la solución de la ecuación homogénea correspondiente
Ahora hay que resolver nuestra ecuación heterogénea
y'' + p*y' + q*y = s

Usamos el método de variación de la constante arbitraria
Consideremos que C1 y C2 son funciones de x

Y la solución general será:
$$y{\left(x \right)} = x \operatorname{C_{2}}{\left(x \right)} e^{x} + \operatorname{C_{1}}{\left(x \right)} e^{x}$$
donde C1(x) y C2(x)
según el método de variación de constantes hallemos del sistema:
$$\operatorname{y_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \operatorname{y_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{1}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{2}}{\left(x \right)} = f{\left(x \right)}$$
donde
y1(x) y y2(x) son soluciones parciales linealmente independientes de la ecuación diferencial lineal homogénea,
y1(x) = exp(x) (C1=1, C2=0),
y2(x) = x*exp(x) (C1=0, C2=1).
A es un término independiente f = - s, o
$$f{\left(x \right)} = x e^{x}$$
Es decir, el sistema tendrá la forma:
$$x e^{x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + e^{x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 0$$
$$\frac{d}{d x} x e^{x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} e^{x} = x e^{x}$$
o
$$x e^{x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + e^{x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 0$$
$$\left(x e^{x} + e^{x}\right) \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + e^{x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = x e^{x}$$
Resolvamos este sistema:
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = - x^{2}$$
$$\frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = x$$
- son ecuaciones diferenciales simples, resolvámoslas
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \int \left(- x^{2}\right)\, dx$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + \int x\, dx$$
o
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} - \frac{x^{3}}{3}$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + \frac{x^{2}}{2}$$
Sustituyamos C1(x) y C2(x) hallados en
$$y{\left(x \right)} = x \operatorname{C_{2}}{\left(x \right)} e^{x} + \operatorname{C_{1}}{\left(x \right)} e^{x}$$
Entonces la respuesta definitiva es:
$$y{\left(x \right)} = C_{3} e^{x} + C_{4} x e^{x} + \frac{x^{3} e^{x}}{6}$$
donde C3 y C4 hay son constantes
Respuesta [src]
       /       /      2\\   
       |       |     x ||  x
y(x) = |C1 + x*|C2 + --||*e 
       \       \     6 //   
$$y{\left(x \right)} = \left(C_{1} + x \left(C_{2} + \frac{x^{2}}{6}\right)\right) e^{x}$$
Clasificación
nth linear constant coeff undetermined coefficients
nth linear constant coeff variation of parameters
nth linear constant coeff variation of parameters Integral