Se da la desigualdad:
$$\left(\frac{5 \log{\left(1 \right)}}{2} \left(- x^{2} + \left(7 x + 4\right)\right) + \left(- x^{2} + \left(7 x + 4\right)\right) \log{\left(2 \right)}^{2}\right) + 4 > 0$$
Para resolver esta desigualdad primero hay que resolver la ecuación correspondiente:
$$\left(\frac{5 \log{\left(1 \right)}}{2} \left(- x^{2} + \left(7 x + 4\right)\right) + \left(- x^{2} + \left(7 x + 4\right)\right) \log{\left(2 \right)}^{2}\right) + 4 = 0$$
Resolvemos:
Abramos la expresión en la ecuación
$$\left(\frac{5 \log{\left(1 \right)}}{2} \left(- x^{2} + \left(7 x + 4\right)\right) + \left(- x^{2} + \left(7 x + 4\right)\right) \log{\left(2 \right)}^{2}\right) + 4 = 0$$
Obtenemos la ecuación cuadrática
$$- x^{2} \log{\left(2 \right)}^{2} + 7 x \log{\left(2 \right)}^{2} + 4 \log{\left(2 \right)}^{2} + 4 = 0$$
Es la ecuación de la forma
a*x^2 + b*x + c = 0
La ecuación cuadrática puede ser resuelta
con la ayuda del discriminante.
Las raíces de la ecuación cuadrática:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
donde D = b^2 - 4*a*c es el discriminante.
Como
$$a = - \log{\left(2 \right)}^{2}$$
$$b = 7 \log{\left(2 \right)}^{2}$$
$$c = 4 \log{\left(2 \right)}^{2} + 4$$
, entonces
D = b^2 - 4 * a * c =
(7*log(2)^2)^2 - 4 * (-log(2)^2) * (4 + 4*log(2)^2) = 49*log(2)^4 + 4*log(2)^2*(4 + 4*log(2)^2)
Como D > 0 la ecuación tiene dos raíces.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
o
$$x_{1} = - \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}}$$
$$x_{2} = - \frac{- \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}} - 7 \log{\left(2 \right)}^{2}}{2 \log{\left(2 \right)}^{2}}$$
$$x_{1} = - \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}}$$
$$x_{2} = - \frac{- \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}} - 7 \log{\left(2 \right)}^{2}}{2 \log{\left(2 \right)}^{2}}$$
$$x_{1} = - \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}}$$
$$x_{2} = - \frac{- \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}} - 7 \log{\left(2 \right)}^{2}}{2 \log{\left(2 \right)}^{2}}$$
Las raíces dadas
$$x_{1} = - \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}}$$
$$x_{2} = - \frac{- \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}} - 7 \log{\left(2 \right)}^{2}}{2 \log{\left(2 \right)}^{2}}$$
son puntos de cambio del signo de desigualdad en las soluciones.
Primero definámonos con el signo hasta el punto extremo izquierdo:
$$x_{0} < x_{1}$$
Consideremos, por ejemplo, el punto
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}} + - \frac{1}{10}$$
=
$$- \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}} - \frac{1}{10}$$
lo sustituimos en la expresión
$$\left(\frac{5 \log{\left(1 \right)}}{2} \left(- x^{2} + \left(7 x + 4\right)\right) + \left(- x^{2} + \left(7 x + 4\right)\right) \log{\left(2 \right)}^{2}\right) + 4 > 0$$
$$\left(\left(\left(7 \left(- \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}} - \frac{1}{10}\right) + 4\right) - \left(- \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}} - \frac{1}{10}\right)^{2}\right) \log{\left(2 \right)}^{2} + \frac{5 \log{\left(1 \right)}}{2} \left(\left(7 \left(- \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}} - \frac{1}{10}\right) + 4\right) - \left(- \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}} - \frac{1}{10}\right)^{2}\right)\right) + 4 > 0$$
/ 2 \
| / ________________________________________ \ / ________________________________________ \|
| | / 4 2 / 2 \ 2 | | / 4 2 / 2 \ 2 ||
2 |33 | 1 \/ 49*log (2) + 4*log (2)*\4 + 4*log (2)/ - 7*log (2)| 7*\\/ 49*log (2) + 4*log (2)*\4 + 4*log (2)/ - 7*log (2)/| > 0
4 + log (2)*|-- - |- -- - -------------------------------------------------------| - -----------------------------------------------------------|
|10 | 10 2 | 2 |
\ \ 2*log (2) / 2*log (2) /
Entonces
$$x < - \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}}$$
no se cumple
significa que una de las soluciones de nuestra ecuación será con:
$$x > - \frac{- 7 \log{\left(2 \right)}^{2} + \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}}}{2 \log{\left(2 \right)}^{2}} \wedge x < - \frac{- \sqrt{49 \log{\left(2 \right)}^{4} + 4 \left(4 \log{\left(2 \right)}^{2} + 4\right) \log{\left(2 \right)}^{2}} - 7 \log{\left(2 \right)}^{2}}{2 \log{\left(2 \right)}^{2}}$$
_____
/ \
-------ο-------ο-------
x1 x2