Integral de (4*x+1)*e^(2*x) dx
Solución
Solución detallada
-
Hay varias maneras de calcular esta integral.
Método #1
-
que u=2x.
Luego que du=2dx y ponemos du:
∫(ueu+2eu)du
-
Integramos término a término:
-
Usamos la integración por partes:
∫udv=uv−∫vdu
que u(u)=u y que dv(u)=eu.
Entonces du(u)=1.
Para buscar v(u):
-
La integral de la función exponencial es la mesma.
∫eudu=eu
Ahora resolvemos podintegral.
-
La integral de la función exponencial es la mesma.
∫eudu=eu
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
∫2eudu=2∫eudu
-
La integral de la función exponencial es la mesma.
∫eudu=eu
Por lo tanto, el resultado es: 2eu
El resultado es: ueu−2eu
Si ahora sustituir u más en:
2xe2x−2e2x
Método #2
-
Vuelva a escribir el integrando:
e2x(4x+1)=4xe2x+e2x
-
Integramos término a término:
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
∫4xe2xdx=4∫xe2xdx
-
Usamos la integración por partes:
∫udv=uv−∫vdu
que u(x)=x y que dv(x)=e2x.
Entonces du(x)=1.
Para buscar v(x):
-
que u=2x.
Luego que du=2dx y ponemos 2du:
∫2eudu
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
False
-
La integral de la función exponencial es la mesma.
∫eudu=eu
Por lo tanto, el resultado es: 2eu
Si ahora sustituir u más en:
2e2x
Ahora resolvemos podintegral.
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
∫2e2xdx=2∫e2xdx
-
que u=2x.
Luego que du=2dx y ponemos 2du:
∫2eudu
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
False
-
La integral de la función exponencial es la mesma.
∫eudu=eu
Por lo tanto, el resultado es: 2eu
Si ahora sustituir u más en:
2e2x
Por lo tanto, el resultado es: 4e2x
Por lo tanto, el resultado es: 2xe2x−e2x
-
que u=2x.
Luego que du=2dx y ponemos 2du:
∫2eudu
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
False
-
La integral de la función exponencial es la mesma.
∫eudu=eu
Por lo tanto, el resultado es: 2eu
Si ahora sustituir u más en:
2e2x
El resultado es: 2xe2x−2e2x
Método #3
-
Vuelva a escribir el integrando:
e2x(4x+1)=4xe2x+e2x
-
Integramos término a término:
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
∫4xe2xdx=4∫xe2xdx
-
Usamos la integración por partes:
∫udv=uv−∫vdu
que u(x)=x y que dv(x)=e2x.
Entonces du(x)=1.
Para buscar v(x):
-
que u=2x.
Luego que du=2dx y ponemos 2du:
∫2eudu
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
False
-
La integral de la función exponencial es la mesma.
∫eudu=eu
Por lo tanto, el resultado es: 2eu
Si ahora sustituir u más en:
2e2x
Ahora resolvemos podintegral.
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
∫2e2xdx=2∫e2xdx
-
que u=2x.
Luego que du=2dx y ponemos 2du:
∫2eudu
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
False
-
La integral de la función exponencial es la mesma.
∫eudu=eu
Por lo tanto, el resultado es: 2eu
Si ahora sustituir u más en:
2e2x
Por lo tanto, el resultado es: 4e2x
Por lo tanto, el resultado es: 2xe2x−e2x
-
que u=2x.
Luego que du=2dx y ponemos 2du:
∫2eudu
-
La integral del producto de una función por una constante es la constante por la integral de esta función:
False
-
La integral de la función exponencial es la mesma.
∫eudu=eu
Por lo tanto, el resultado es: 2eu
Si ahora sustituir u más en:
2e2x
El resultado es: 2xe2x−2e2x
-
Ahora simplificar:
2(4x−1)e2x
-
Añadimos la constante de integración:
2(4x−1)e2x+constant
Respuesta:
2(4x−1)e2x+constant
Respuesta (Indefinida)
[src]
/
| 2*x
| 2*x e 2*x
| (4*x + 1)*E dx = C - ---- + 2*x*e
| 2
/
∫e2x(4x+1)dx=C+2xe2x−2e2x
Gráfica
21+23e2
=
21+23e2
Estos ejemplos se pueden aplicar para introducción de los límites de integración inferior y superior.