Sr Examen

Otras calculadoras

Integral de (x^2+x+1)/((x^2+1)^3) dx

Límites de integración:

interior superior
v

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
  1              
  /              
 |               
 |   2           
 |  x  + x + 1   
 |  ---------- dx
 |          3    
 |  / 2    \     
 |  \x  + 1/     
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\left(x^{2} + x\right) + 1}{\left(x^{2} + 1\right)^{3}}\, dx$$
Integral((x^2 + x + 1)/(x^2 + 1)^3, (x, 0, 1))
Solución detallada
  1. Hay varias maneras de calcular esta integral.

    Método #1

    1. Vuelva a escribir el integrando:

    2. Integramos término a término:

      1. que .

        Luego que y ponemos :

        1. La integral del producto de una función por una constante es la constante por la integral de esta función:

          1. Integral es when :

          Por lo tanto, el resultado es:

        Si ahora sustituir más en:

        TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=True, context=(x**2 + 1)**(-2), symbol=x)

      El resultado es:

    Método #2

    1. Vuelva a escribir el integrando:

    2. Vuelva a escribir el integrando:

    3. Integramos término a término:

      1. que .

        Luego que y ponemos :

        1. La integral del producto de una función por una constante es la constante por la integral de esta función:

          1. Integral es when :

          Por lo tanto, el resultado es:

        Si ahora sustituir más en:

        TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=True, context=(x**2 + 1)**(-2), symbol=x)

      El resultado es:

    Método #3

    1. Vuelva a escribir el integrando:

    2. Integramos término a término:

      1. Vuelva a escribir el integrando:

      2. Integramos término a término:

          TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=True, context=(x**2 + 1)**(-2), symbol=x)

        1. La integral del producto de una función por una constante es la constante por la integral de esta función:

            TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**4, substep=RewriteRule(rewritten=(cos(2*_theta)/2 + 1/2)**2, substep=AlternativeRule(alternatives=[RewriteRule(rewritten=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, substep=AddRule(substeps=[ConstantTimesRule(constant=1/4, other=cos(2*_theta)**2, substep=RewriteRule(rewritten=cos(4*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(4*_theta), substep=URule(u_var=_u, u_func=4*_theta, constant=1/4, substep=ConstantTimesRule(constant=1/4, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(4*_theta), symbol=_theta), context=cos(4*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(4*_theta)/2 + 1/2, symbol=_theta), context=cos(2*_theta)**2, symbol=_theta), context=cos(2*_theta)**2/4, symbol=_theta), ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/4, context=1/4, symbol=_theta)], context=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, symbol=_theta), context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta), RewriteRule(rewritten=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, substep=AddRule(substeps=[ConstantTimesRule(constant=1/4, other=cos(2*_theta)**2, substep=RewriteRule(rewritten=cos(4*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(4*_theta), substep=URule(u_var=_u, u_func=4*_theta, constant=1/4, substep=ConstantTimesRule(constant=1/4, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(4*_theta), symbol=_theta), context=cos(4*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(4*_theta)/2 + 1/2, symbol=_theta), context=cos(2*_theta)**2, symbol=_theta), context=cos(2*_theta)**2/4, symbol=_theta), ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/4, context=1/4, symbol=_theta)], context=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, symbol=_theta), context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta)], context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta), context=cos(_theta)**4, symbol=_theta), restriction=True, context=(x**2 + 1)**(-3), symbol=x)

          Por lo tanto, el resultado es:

        El resultado es:

      1. que .

        Luego que y ponemos :

        1. Vuelva a escribir el integrando:

        2. La integral del producto de una función por una constante es la constante por la integral de esta función:

          1. que .

            Luego que y ponemos :

            1. Integral es when :

            Si ahora sustituir más en:

          Por lo tanto, el resultado es:

        Si ahora sustituir más en:

      1. Vuelva a escribir el integrando:

        TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**4, substep=RewriteRule(rewritten=(cos(2*_theta)/2 + 1/2)**2, substep=AlternativeRule(alternatives=[RewriteRule(rewritten=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, substep=AddRule(substeps=[ConstantTimesRule(constant=1/4, other=cos(2*_theta)**2, substep=RewriteRule(rewritten=cos(4*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(4*_theta), substep=URule(u_var=_u, u_func=4*_theta, constant=1/4, substep=ConstantTimesRule(constant=1/4, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(4*_theta), symbol=_theta), context=cos(4*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(4*_theta)/2 + 1/2, symbol=_theta), context=cos(2*_theta)**2, symbol=_theta), context=cos(2*_theta)**2/4, symbol=_theta), ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/4, context=1/4, symbol=_theta)], context=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, symbol=_theta), context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta), RewriteRule(rewritten=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, substep=AddRule(substeps=[ConstantTimesRule(constant=1/4, other=cos(2*_theta)**2, substep=RewriteRule(rewritten=cos(4*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(4*_theta), substep=URule(u_var=_u, u_func=4*_theta, constant=1/4, substep=ConstantTimesRule(constant=1/4, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(4*_theta), symbol=_theta), context=cos(4*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(4*_theta)/2 + 1/2, symbol=_theta), context=cos(2*_theta)**2, symbol=_theta), context=cos(2*_theta)**2/4, symbol=_theta), ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/4, context=1/4, symbol=_theta)], context=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, symbol=_theta), context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta)], context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta), context=cos(_theta)**4, symbol=_theta), restriction=True, context=(x**2 + 1)**(-3), symbol=x)

      El resultado es:

  2. Ahora simplificar:

  3. Añadimos la constante de integración:


Respuesta:

Respuesta (Indefinida) [src]
  /                                                      
 |                                                       
 |  2                                                    
 | x  + x + 1          atan(x)        1            x     
 | ---------- dx = C + ------- - ----------- + ----------
 |         3              2                2     /     2\
 | / 2    \                        /     2\    2*\1 + x /
 | \x  + 1/                      4*\1 + x /              
 |                                                       
/                                                        
$$\int \frac{\left(x^{2} + x\right) + 1}{\left(x^{2} + 1\right)^{3}}\, dx = C + \frac{x}{2 \left(x^{2} + 1\right)} + \frac{\operatorname{atan}{\left(x \right)}}{2} - \frac{1}{4 \left(x^{2} + 1\right)^{2}}$$
Gráfica
Respuesta [src]
7    pi
-- + --
16   8 
$$\frac{\pi}{8} + \frac{7}{16}$$
=
=
7    pi
-- + --
16   8 
$$\frac{\pi}{8} + \frac{7}{16}$$
7/16 + pi/8
Respuesta numérica [src]
0.830199081698724
0.830199081698724

    Estos ejemplos se pueden aplicar para introducción de los límites de integración inferior y superior.