Sr Examen

Integral de x×arcsin(2x) dx

Límites de integración:

interior superior
v

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
  1               
  /               
 |                
 |  x*asin(2*x) dx
 |                
/                 
0                 
01xasin(2x)dx\int\limits_{0}^{1} x \operatorname{asin}{\left(2 x \right)}\, dx
Integral(x*asin(2*x), (x, 0, 1))
Solución detallada
  1. Usamos la integración por partes:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    que u(x)=asin(2x)u{\left(x \right)} = \operatorname{asin}{\left(2 x \right)} y que dv(x)=x\operatorname{dv}{\left(x \right)} = x.

    Entonces du(x)=214x2\operatorname{du}{\left(x \right)} = \frac{2}{\sqrt{1 - 4 x^{2}}}.

    Para buscar v(x)v{\left(x \right)}:

    1. Integral xnx^{n} es xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    Ahora resolvemos podintegral.

    TrigSubstitutionRule(theta=_theta, func=sin(_theta)/2, rewritten=sin(_theta)**2/8, substep=ConstantTimesRule(constant=1/8, other=sin(_theta)**2, substep=RewriteRule(rewritten=1/2 - cos(2*_theta)/2, substep=AddRule(substeps=[ConstantRule(constant=1/2, context=1/2, symbol=_theta), ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta)], context=1/2 - cos(2*_theta)/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), context=sin(_theta)**2/8, symbol=_theta), restriction=(x > -1/2) & (x < 1/2), context=x**2/sqrt(1 - 4*x**2), symbol=x)

  2. Ahora simplificar:

    {x2asin(2x)2+x14x28asin(2x)16forx>12x<12\begin{cases} \frac{x^{2} \operatorname{asin}{\left(2 x \right)}}{2} + \frac{x \sqrt{1 - 4 x^{2}}}{8} - \frac{\operatorname{asin}{\left(2 x \right)}}{16} & \text{for}\: x > - \frac{1}{2} \wedge x < \frac{1}{2} \end{cases}

  3. Añadimos la constante de integración:

    {x2asin(2x)2+x14x28asin(2x)16forx>12x<12+constant\begin{cases} \frac{x^{2} \operatorname{asin}{\left(2 x \right)}}{2} + \frac{x \sqrt{1 - 4 x^{2}}}{8} - \frac{\operatorname{asin}{\left(2 x \right)}}{16} & \text{for}\: x > - \frac{1}{2} \wedge x < \frac{1}{2} \end{cases}+ \mathrm{constant}


Respuesta:

{x2asin(2x)2+x14x28asin(2x)16forx>12x<12+constant\begin{cases} \frac{x^{2} \operatorname{asin}{\left(2 x \right)}}{2} + \frac{x \sqrt{1 - 4 x^{2}}}{8} - \frac{\operatorname{asin}{\left(2 x \right)}}{16} & \text{for}\: x > - \frac{1}{2} \wedge x < \frac{1}{2} \end{cases}+ \mathrm{constant}

Respuesta (Indefinida) [src]
  /                     //                 __________                            \    2          
 |                      ||                /        2                             |   x *asin(2*x)
 | x*asin(2*x) dx = C - | -1/2, x < 1/2)|        2      
/                       \\    16             8                                   /               
xasin(2x)dx=C+x2asin(2x)2{x14x28+asin(2x)16forx>12x<12\int x \operatorname{asin}{\left(2 x \right)}\, dx = C + \frac{x^{2} \operatorname{asin}{\left(2 x \right)}}{2} - \begin{cases} - \frac{x \sqrt{1 - 4 x^{2}}}{8} + \frac{\operatorname{asin}{\left(2 x \right)}}{16} & \text{for}\: x > - \frac{1}{2} \wedge x < \frac{1}{2} \end{cases}
Gráfica
0.000.050.100.150.200.250.300.350.400.450.500.01.0
Respuesta [src]
                ___
7*asin(2)   I*\/ 3 
--------- + -------
    16         8   
7asin(2)16+3i8\frac{7 \operatorname{asin}{\left(2 \right)}}{16} + \frac{\sqrt{3} i}{8}
=
=
                ___
7*asin(2)   I*\/ 3 
--------- + -------
    16         8   
7asin(2)16+3i8\frac{7 \operatorname{asin}{\left(2 \right)}}{16} + \frac{\sqrt{3} i}{8}
7*asin(2)/16 + i*sqrt(3)/8
Respuesta numérica [src]
(0.687505232320913 - 0.359379330459425j)
(0.687505232320913 - 0.359379330459425j)

    Estos ejemplos se pueden aplicar para introducción de los límites de integración inferior y superior.