Sr Examen

Gráfico de la función y = cos(2x)-2sin(4x)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
f(x) = cos(2*x) - 2*sin(4*x)
f(x)=2sin(4x)+cos(2x)f{\left(x \right)} = - 2 \sin{\left(4 x \right)} + \cos{\left(2 x \right)}
f = -2*sin(4*x) + cos(2*x)
Gráfico de la función
02468-8-6-4-2-10105-5
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
2sin(4x)+cos(2x)=0- 2 \sin{\left(4 x \right)} + \cos{\left(2 x \right)} = 0
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
x1=3π4x_{1} = - \frac{3 \pi}{4}
x2=π4x_{2} = - \frac{\pi}{4}
x3=π4x_{3} = \frac{\pi}{4}
x4=3π4x_{4} = \frac{3 \pi}{4}
x5=i(log(4)log(15+i))2x_{5} = \frac{i \left(\log{\left(4 \right)} - \log{\left(- \sqrt{15} + i \right)}\right)}{2}
x6=i(log(4)log(15+i))2x_{6} = \frac{i \left(\log{\left(4 \right)} - \log{\left(\sqrt{15} + i \right)}\right)}{2}
x7=ilog(15+i2)x_{7} = - i \log{\left(- \frac{\sqrt{- \sqrt{15} + i}}{2} \right)}
x8=ilog(15+i2)x_{8} = - i \log{\left(- \frac{\sqrt{\sqrt{15} + i}}{2} \right)}
Solución numérica
x1=15.5816231403779x_{1} = -15.5816231403779
x2=7.06858347057703x_{2} = -7.06858347057703
x3=32.2013246992954x_{3} = 32.2013246992954
x4=10.2101761241668x_{4} = 10.2101761241668
x5=32.2013246992954x_{5} = -32.2013246992954
x6=41.6261026600648x_{6} = -41.6261026600648
x7=79.9842725389687x_{7} = 79.9842725389687
x8=55.7632696012188x_{8} = 55.7632696012188
x9=37.5727717155065x_{9} = -37.5727717155065
x10=64.2763092710197x_{10} = 64.2763092710197
x11=7.98032176154552x_{11} = -7.98032176154552
x12=19.6349540849362x_{12} = -19.6349540849362
x13=98.8338284605074x_{13} = 98.8338284605074
x14=3.92699081698724x_{14} = -3.92699081698724
x15=69.9004365423729x_{15} = -69.9004365423729
x16=29.0597320457056x_{16} = 29.0597320457056
x17=67.6705821797516x_{17} = -67.6705821797516
x18=6.40952543475063x_{18} = 6.40952543475063
x19=77.7544181763474x_{19} = -77.7544181763474
x20=29.9714703366741x_{20} = -29.9714703366741
x21=50.1391423298656x_{21} = -50.1391423298656
x22=91.8915851175014x_{22} = -91.8915851175014
x23=73.0420291959627x_{23} = 73.0420291959627
x24=84.037603483527x_{24} = -84.037603483527
x25=91.8915851175014x_{25} = 91.8915851175014
x26=55.7632696012188x_{26} = -55.7632696012188
x27=73.9537674869312x_{27} = -73.9537674869312
x28=84.037603483527x_{28} = 84.037603483527
x29=88.0909344280852x_{29} = 88.0909344280852
x30=0.126340127571039x_{30} = 0.126340127571039
x31=76.1836218495525x_{31} = -76.1836218495525
x32=3.92699081698724x_{32} = 3.92699081698724
x33=72.3829711601363x_{33} = 72.3829711601363
x34=65.8471055978146x_{34} = -65.8471055978146
x35=90.3207887907066x_{35} = 90.3207887907066
x36=59.563920290635x_{36} = -59.563920290635
x37=20.2940121207626x_{37} = 20.2940121207626
x38=98.174770424681x_{38} = 98.174770424681
x39=28.1479937547371x_{39} = -28.1479937547371
x40=18.0641577581413x_{40} = -18.0641577581413
x41=76.1836218495525x_{41} = 76.1836218495525
x42=80.2369527941108x_{42} = -80.2369527941108
x43=24.3473430653209x_{43} = 24.3473430653209
x44=22.1174887026996x_{44} = 22.1174887026996
x45=14.010826813583x_{45} = 14.010826813583
x46=40.0553063332699x_{46} = -40.0553063332699
x47=44.1086372778281x_{47} = 44.1086372778281
x48=66.0997858529567x_{48} = 66.0997858529567
x49=57.9931239638401x_{49} = 57.9931239638401
x50=98.174770424681x_{50} = -98.174770424681
x51=72.1302909049942x_{51} = -72.1302909049942
x52=46.3384916404494x_{52} = 46.3384916404494
x53=40.0553063332699x_{53} = 40.0553063332699
x54=33.7721210260903x_{54} = -33.7721210260903
x55=25.9181393921158x_{55} = -25.9181393921158
x56=86.2674578461483x_{56} = 86.2674578461483
x57=51.9626189118026x_{57} = -51.9626189118026
x58=25.9181393921158x_{58} = 25.9181393921158
x59=45.679433604623x_{59} = -45.679433604623
x60=58.2458042189822x_{60} = -58.2458042189822
x61=10.2101761241668x_{61} = -10.2101761241668
x62=11.1219144151353x_{62} = -11.1219144151353
x63=99.7455667514759x_{63} = -99.7455667514759
x64=62.0464549083984x_{64} = 62.0464549083984
x65=94.1214394801228x_{65} = -94.1214394801228
x66=54.1924732744239x_{66} = 54.1924732744239
x67=68.329640215578x_{67} = 68.329640215578
x68=21.8648084475575x_{68} = -21.8648084475575
x69=28.4006740098792x_{69} = 28.4006740098792
x70=42.2851606958912x_{70} = 42.2851606958912
x71=85.6083998103219x_{71} = -85.6083998103219
x72=18.0641577581413x_{72} = 18.0641577581413
x73=54.1924732744239x_{73} = -54.1924732744239
x74=50.3918225850077x_{74} = 50.3918225850077
x75=23.6882850294945x_{75} = -23.6882850294945
x76=2.35619449019234x_{76} = 2.35619449019234
x77=11.7809724509617x_{77} = -11.7809724509617
x78=11.7809724509617x_{78} = 11.7809724509617
x79=62.0464549083984x_{79} = -62.0464549083984
x80=69.9004365423729x_{80} = 69.9004365423729
x81=87.8382541729432x_{81} = -87.8382541729432
x82=95.9449160620597x_{82} = -95.9449160620597
x83=36.0019753887116x_{83} = 36.0019753887116
x84=63.6172512351933x_{84} = -63.6172512351933
x85=43.8559570226861x_{85} = -43.8559570226861
x86=89.6617307548802x_{86} = -89.6617307548802
x87=1.69713645436594x_{87} = -1.69713645436594
x88=81.5550688657636x_{88} = -81.5550688657636
x89=33.7721210260903x_{89} = 33.7721210260903
x90=145.957718264354x_{90} = 145.957718264354
x91=47.9092879672443x_{91} = 47.9092879672443
x92=36.2546556438537x_{92} = -36.2546556438537
x93=94.3741197352648x_{93} = 94.3741197352648
x94=76.8426798853789x_{94} = 76.8426798853789
x95=47.9092879672443x_{95} = -47.9092879672443
x96=7.06858347057703x_{96} = 7.06858347057703
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en cos(2*x) - 2*sin(4*x).
2sin(04)+cos(02)- 2 \sin{\left(0 \cdot 4 \right)} + \cos{\left(0 \cdot 2 \right)}
Resultado:
f(0)=1f{\left(0 \right)} = 1
Punto:
(0, 1)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
primera derivada
2sin(2x)8cos(4x)=0- 2 \sin{\left(2 x \right)} - 8 \cos{\left(4 x \right)} = 0
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga extremos
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
segunda derivada
4(8sin(4x)cos(2x))=04 \left(8 \sin{\left(4 x \right)} - \cos{\left(2 x \right)}\right) = 0
Resolvermos esta ecuación
Raíces de esta ecuación
x1=3π4x_{1} = - \frac{3 \pi}{4}
x2=π4x_{2} = - \frac{\pi}{4}
x3=π4x_{3} = \frac{\pi}{4}
x4=3π4x_{4} = \frac{3 \pi}{4}
x5=ilog(255+i4)x_{5} = - i \log{\left(- \frac{\sqrt{- \sqrt{255} + i}}{4} \right)}
x6=ilog(255+i4)x_{6} = - i \log{\left(\frac{\sqrt{- \sqrt{255} + i}}{4} \right)}
x7=ilog(255+i4)x_{7} = - i \log{\left(- \frac{\sqrt{\sqrt{255} + i}}{4} \right)}
x8=ilog(255+i4)x_{8} = - i \log{\left(\frac{\sqrt{\sqrt{255} + i}}{4} \right)}

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
[atan(cos(atan(255255)2)sin(atan(255255)2)),)\left[\operatorname{atan}{\left(\frac{\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{255}}{255} \right)}}{2} \right)}}{\sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{255}}{255} \right)}}{2} \right)}} \right)}, \infty\right)
Convexa en los intervalos
(,π+atan(sin(atan(255255)2)cos(atan(255255)2))]\left(-\infty, - \pi + \operatorname{atan}{\left(\frac{\sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{255}}{255} \right)}}{2} \right)}}{\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{255}}{255} \right)}}{2} \right)}} \right)}\right]
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
limx(2sin(4x)+cos(2x))=3,3\lim_{x \to -\infty}\left(- 2 \sin{\left(4 x \right)} + \cos{\left(2 x \right)}\right) = \left\langle -3, 3\right\rangle
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
y=3,3y = \left\langle -3, 3\right\rangle
limx(2sin(4x)+cos(2x))=3,3\lim_{x \to \infty}\left(- 2 \sin{\left(4 x \right)} + \cos{\left(2 x \right)}\right) = \left\langle -3, 3\right\rangle
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
y=3,3y = \left\langle -3, 3\right\rangle
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función cos(2*x) - 2*sin(4*x), dividida por x con x->+oo y x ->-oo
limx(2sin(4x)+cos(2x)x)=0\lim_{x \to -\infty}\left(\frac{- 2 \sin{\left(4 x \right)} + \cos{\left(2 x \right)}}{x}\right) = 0
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
limx(2sin(4x)+cos(2x)x)=0\lim_{x \to \infty}\left(\frac{- 2 \sin{\left(4 x \right)} + \cos{\left(2 x \right)}}{x}\right) = 0
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
2sin(4x)+cos(2x)=2sin(4x)+cos(2x)- 2 \sin{\left(4 x \right)} + \cos{\left(2 x \right)} = 2 \sin{\left(4 x \right)} + \cos{\left(2 x \right)}
- No
2sin(4x)+cos(2x)=2sin(4x)cos(2x)- 2 \sin{\left(4 x \right)} + \cos{\left(2 x \right)} = - 2 \sin{\left(4 x \right)} - \cos{\left(2 x \right)}
- No
es decir, función
no es
par ni impar