Sr Examen

Otras calculadoras

Integral de xsqrt(1+x^2)^3 dx

Límites de integración:

interior superior
v

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
   ___                 
 \/ 3                  
   /                   
  |                    
  |                3   
  |        ________    
  |       /      2     
  |   x*\/  1 + x    dx
  |                    
 /                     
 0                     
03x(x2+1)3dx\int\limits_{0}^{\sqrt{3}} x \left(\sqrt{x^{2} + 1}\right)^{3}\, dx
Integral(x*(sqrt(1 + x^2))^3, (x, 0, sqrt(3)))
Solución detallada
  1. Hay varias maneras de calcular esta integral.

    Método #1

    1. que u=x2+1u = \sqrt{x^{2} + 1}.

      Luego que du=xdxx2+1du = \frac{x dx}{\sqrt{x^{2} + 1}} y ponemos dudu:

      u4du\int u^{4}\, du

      1. Integral unu^{n} es un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

      Si ahora sustituir uu más en:

      (x2+1)525\frac{\left(x^{2} + 1\right)^{\frac{5}{2}}}{5}

    Método #2

    1. Vuelva a escribir el integrando:

      x(x2+1)3=x3x2+1+xx2+1x \left(\sqrt{x^{2} + 1}\right)^{3} = x^{3} \sqrt{x^{2} + 1} + x \sqrt{x^{2} + 1}

    2. Integramos término a término:

        TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=sin(_theta)**3/cos(_theta)**6, substep=RewriteRule(rewritten=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=1, substep=RewriteRule(rewritten=_u**(-4) - 1/_u**6, substep=AddRule(substeps=[PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=-1/_u**6, symbol=_u)], context=_u**(-4) - 1/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=-(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, substep=ConstantTimesRule(constant=-1, other=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=(_u**2 - 1)/_u**6, substep=RewriteRule(rewritten=_u**(-4) - 1/_u**6, substep=AddRule(substeps=[PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=-1/_u**6, symbol=_u)], context=_u**(-4) - 1/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=sin(_theta)/cos(_theta)**4 - sin(_theta)/cos(_theta)**6, substep=AddRule(substeps=[URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-4), substep=PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), context=_u**(-4), symbol=_u), context=sin(_theta)/cos(_theta)**4, symbol=_theta), ConstantTimesRule(constant=-1, other=sin(_theta)/cos(_theta)**6, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=_u**(-6), symbol=_u), context=sin(_theta)/cos(_theta)**6, symbol=_theta), context=-sin(_theta)/cos(_theta)**6, symbol=_theta)], context=sin(_theta)/cos(_theta)**4 - sin(_theta)/cos(_theta)**6, symbol=_theta), context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta)], context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), context=-(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=-sin(_theta)/cos(_theta)**4 + sin(_theta)/cos(_theta)**6, substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)/cos(_theta)**4, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-4), substep=PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), context=_u**(-4), symbol=_u), context=sin(_theta)/cos(_theta)**4, symbol=_theta), context=-sin(_theta)/cos(_theta)**4, symbol=_theta), URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=_u**(-6), symbol=_u), context=sin(_theta)/cos(_theta)**6, symbol=_theta)], context=-sin(_theta)/cos(_theta)**4 + sin(_theta)/cos(_theta)**6, symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta)], context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), context=sin(_theta)**3/cos(_theta)**6, symbol=_theta), restriction=True, context=x**3*sqrt(x**2 + 1), symbol=x)

      1. que u=x2+1u = x^{2} + 1.

        Luego que du=2xdxdu = 2 x dx y ponemos du2\frac{du}{2}:

        u2du\int \frac{\sqrt{u}}{2}\, du

        1. La integral del producto de una función por una constante es la constante por la integral de esta función:

          udu=udu2\int \sqrt{u}\, du = \frac{\int \sqrt{u}\, du}{2}

          1. Integral unu^{n} es un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

          Por lo tanto, el resultado es: u323\frac{u^{\frac{3}{2}}}{3}

        Si ahora sustituir uu más en:

        (x2+1)323\frac{\left(x^{2} + 1\right)^{\frac{3}{2}}}{3}

      El resultado es: (x2+1)525\frac{\left(x^{2} + 1\right)^{\frac{5}{2}}}{5}

    Método #3

    1. Vuelva a escribir el integrando:

      x(x2+1)3=x3x2+1+xx2+1x \left(\sqrt{x^{2} + 1}\right)^{3} = x^{3} \sqrt{x^{2} + 1} + x \sqrt{x^{2} + 1}

    2. Integramos término a término:

        TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=sin(_theta)**3/cos(_theta)**6, substep=RewriteRule(rewritten=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=1, substep=RewriteRule(rewritten=_u**(-4) - 1/_u**6, substep=AddRule(substeps=[PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=-1/_u**6, symbol=_u)], context=_u**(-4) - 1/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=-(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, substep=ConstantTimesRule(constant=-1, other=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=(_u**2 - 1)/_u**6, substep=RewriteRule(rewritten=_u**(-4) - 1/_u**6, substep=AddRule(substeps=[PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=-1/_u**6, symbol=_u)], context=_u**(-4) - 1/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=sin(_theta)/cos(_theta)**4 - sin(_theta)/cos(_theta)**6, substep=AddRule(substeps=[URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-4), substep=PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), context=_u**(-4), symbol=_u), context=sin(_theta)/cos(_theta)**4, symbol=_theta), ConstantTimesRule(constant=-1, other=sin(_theta)/cos(_theta)**6, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=_u**(-6), symbol=_u), context=sin(_theta)/cos(_theta)**6, symbol=_theta), context=-sin(_theta)/cos(_theta)**6, symbol=_theta)], context=sin(_theta)/cos(_theta)**4 - sin(_theta)/cos(_theta)**6, symbol=_theta), context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta)], context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), context=-(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=-sin(_theta)/cos(_theta)**4 + sin(_theta)/cos(_theta)**6, substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)/cos(_theta)**4, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-4), substep=PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), context=_u**(-4), symbol=_u), context=sin(_theta)/cos(_theta)**4, symbol=_theta), context=-sin(_theta)/cos(_theta)**4, symbol=_theta), URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=_u**(-6), symbol=_u), context=sin(_theta)/cos(_theta)**6, symbol=_theta)], context=-sin(_theta)/cos(_theta)**4 + sin(_theta)/cos(_theta)**6, symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta)], context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), context=sin(_theta)**3/cos(_theta)**6, symbol=_theta), restriction=True, context=x**3*sqrt(x**2 + 1), symbol=x)

      1. que u=x2+1u = x^{2} + 1.

        Luego que du=2xdxdu = 2 x dx y ponemos du2\frac{du}{2}:

        u2du\int \frac{\sqrt{u}}{2}\, du

        1. La integral del producto de una función por una constante es la constante por la integral de esta función:

          udu=udu2\int \sqrt{u}\, du = \frac{\int \sqrt{u}\, du}{2}

          1. Integral unu^{n} es un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

          Por lo tanto, el resultado es: u323\frac{u^{\frac{3}{2}}}{3}

        Si ahora sustituir uu más en:

        (x2+1)323\frac{\left(x^{2} + 1\right)^{\frac{3}{2}}}{3}

      El resultado es: (x2+1)525\frac{\left(x^{2} + 1\right)^{\frac{5}{2}}}{5}

  2. Añadimos la constante de integración:

    (x2+1)525+constant\frac{\left(x^{2} + 1\right)^{\frac{5}{2}}}{5}+ \mathrm{constant}


Respuesta:

(x2+1)525+constant\frac{\left(x^{2} + 1\right)^{\frac{5}{2}}}{5}+ \mathrm{constant}

Respuesta (Indefinida) [src]
  /                                   
 |                                    
 |              3                  5/2
 |      ________           /     2\   
 |     /      2            \1 + x /   
 | x*\/  1 + x    dx = C + -----------
 |                              5     
/                                     
x(x2+1)3dx=C+(x2+1)525\int x \left(\sqrt{x^{2} + 1}\right)^{3}\, dx = C + \frac{\left(x^{2} + 1\right)^{\frac{5}{2}}}{5}
Gráfica
0.00.20.40.60.81.01.21.41.6020
Respuesta [src]
31/5
315\frac{31}{5}
=
=
31/5
315\frac{31}{5}
31/5
Respuesta numérica [src]
6.2
6.2

    Estos ejemplos se pueden aplicar para introducción de los límites de integración inferior y superior.