Sr Examen

Otras calculadoras

Integral de xsqrt(1+x^2)^3 dx

Límites de integración:

interior superior
v

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
   ___                 
 \/ 3                  
   /                   
  |                    
  |                3   
  |        ________    
  |       /      2     
  |   x*\/  1 + x    dx
  |                    
 /                     
 0                     
$$\int\limits_{0}^{\sqrt{3}} x \left(\sqrt{x^{2} + 1}\right)^{3}\, dx$$
Integral(x*(sqrt(1 + x^2))^3, (x, 0, sqrt(3)))
Solución detallada
  1. Hay varias maneras de calcular esta integral.

    Método #1

    1. que .

      Luego que y ponemos :

      1. Integral es when :

      Si ahora sustituir más en:

    Método #2

    1. Vuelva a escribir el integrando:

    2. Integramos término a término:

        TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=sin(_theta)**3/cos(_theta)**6, substep=RewriteRule(rewritten=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=1, substep=RewriteRule(rewritten=_u**(-4) - 1/_u**6, substep=AddRule(substeps=[PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=-1/_u**6, symbol=_u)], context=_u**(-4) - 1/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=-(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, substep=ConstantTimesRule(constant=-1, other=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=(_u**2 - 1)/_u**6, substep=RewriteRule(rewritten=_u**(-4) - 1/_u**6, substep=AddRule(substeps=[PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=-1/_u**6, symbol=_u)], context=_u**(-4) - 1/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=sin(_theta)/cos(_theta)**4 - sin(_theta)/cos(_theta)**6, substep=AddRule(substeps=[URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-4), substep=PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), context=_u**(-4), symbol=_u), context=sin(_theta)/cos(_theta)**4, symbol=_theta), ConstantTimesRule(constant=-1, other=sin(_theta)/cos(_theta)**6, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=_u**(-6), symbol=_u), context=sin(_theta)/cos(_theta)**6, symbol=_theta), context=-sin(_theta)/cos(_theta)**6, symbol=_theta)], context=sin(_theta)/cos(_theta)**4 - sin(_theta)/cos(_theta)**6, symbol=_theta), context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta)], context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), context=-(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=-sin(_theta)/cos(_theta)**4 + sin(_theta)/cos(_theta)**6, substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)/cos(_theta)**4, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-4), substep=PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), context=_u**(-4), symbol=_u), context=sin(_theta)/cos(_theta)**4, symbol=_theta), context=-sin(_theta)/cos(_theta)**4, symbol=_theta), URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=_u**(-6), symbol=_u), context=sin(_theta)/cos(_theta)**6, symbol=_theta)], context=-sin(_theta)/cos(_theta)**4 + sin(_theta)/cos(_theta)**6, symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta)], context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), context=sin(_theta)**3/cos(_theta)**6, symbol=_theta), restriction=True, context=x**3*sqrt(x**2 + 1), symbol=x)

      1. que .

        Luego que y ponemos :

        1. La integral del producto de una función por una constante es la constante por la integral de esta función:

          1. Integral es when :

          Por lo tanto, el resultado es:

        Si ahora sustituir más en:

      El resultado es:

    Método #3

    1. Vuelva a escribir el integrando:

    2. Integramos término a término:

        TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=sin(_theta)**3/cos(_theta)**6, substep=RewriteRule(rewritten=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=1, substep=RewriteRule(rewritten=_u**(-4) - 1/_u**6, substep=AddRule(substeps=[PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=-1/_u**6, symbol=_u)], context=_u**(-4) - 1/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=-(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, substep=ConstantTimesRule(constant=-1, other=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=(_u**2 - 1)/_u**6, substep=RewriteRule(rewritten=_u**(-4) - 1/_u**6, substep=AddRule(substeps=[PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=-1/_u**6, symbol=_u)], context=_u**(-4) - 1/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(_u**2 - 1)/_u**6, symbol=_u), context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=sin(_theta)/cos(_theta)**4 - sin(_theta)/cos(_theta)**6, substep=AddRule(substeps=[URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-4), substep=PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), context=_u**(-4), symbol=_u), context=sin(_theta)/cos(_theta)**4, symbol=_theta), ConstantTimesRule(constant=-1, other=sin(_theta)/cos(_theta)**6, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=_u**(-6), symbol=_u), context=sin(_theta)/cos(_theta)**6, symbol=_theta), context=-sin(_theta)/cos(_theta)**6, symbol=_theta)], context=sin(_theta)/cos(_theta)**4 - sin(_theta)/cos(_theta)**6, symbol=_theta), context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta)], context=(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), context=-(sin(_theta)*cos(_theta)**2 - sin(_theta))/cos(_theta)**6, symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), RewriteRule(rewritten=-sin(_theta)/cos(_theta)**4 + sin(_theta)/cos(_theta)**6, substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)/cos(_theta)**4, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-4), substep=PowerRule(base=_u, exp=-4, context=_u**(-4), symbol=_u), context=_u**(-4), symbol=_u), context=sin(_theta)/cos(_theta)**4, symbol=_theta), context=-sin(_theta)/cos(_theta)**4, symbol=_theta), URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**(-6), substep=PowerRule(base=_u, exp=-6, context=_u**(-6), symbol=_u), context=_u**(-6), symbol=_u), context=sin(_theta)/cos(_theta)**6, symbol=_theta)], context=-sin(_theta)/cos(_theta)**4 + sin(_theta)/cos(_theta)**6, symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta)], context=(1 - cos(_theta)**2)*sin(_theta)/cos(_theta)**6, symbol=_theta), context=sin(_theta)**3/cos(_theta)**6, symbol=_theta), restriction=True, context=x**3*sqrt(x**2 + 1), symbol=x)

      1. que .

        Luego que y ponemos :

        1. La integral del producto de una función por una constante es la constante por la integral de esta función:

          1. Integral es when :

          Por lo tanto, el resultado es:

        Si ahora sustituir más en:

      El resultado es:

  2. Añadimos la constante de integración:


Respuesta:

Respuesta (Indefinida) [src]
  /                                   
 |                                    
 |              3                  5/2
 |      ________           /     2\   
 |     /      2            \1 + x /   
 | x*\/  1 + x    dx = C + -----------
 |                              5     
/                                     
$$\int x \left(\sqrt{x^{2} + 1}\right)^{3}\, dx = C + \frac{\left(x^{2} + 1\right)^{\frac{5}{2}}}{5}$$
Gráfica
Respuesta [src]
31/5
$$\frac{31}{5}$$
=
=
31/5
$$\frac{31}{5}$$
31/5
Respuesta numérica [src]
6.2
6.2

    Estos ejemplos se pueden aplicar para introducción de los límites de integración inferior y superior.