Sr Examen

Otras calculadoras

Integral de ln(x²+1) dx

Límites de integración:

interior superior
v

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
  1               
  /               
 |                
 |     / 2    \   
 |  log\x  + 1/ dx
 |                
/                 
0                 
01log(x2+1)dx\int\limits_{0}^{1} \log{\left(x^{2} + 1 \right)}\, dx
Integral(log(x^2 + 1), (x, 0, 1))
Solución detallada
  1. Usamos la integración por partes:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    que u(x)=log(x2+1)u{\left(x \right)} = \log{\left(x^{2} + 1 \right)} y que dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

    Entonces du(x)=2xx2+1\operatorname{du}{\left(x \right)} = \frac{2 x}{x^{2} + 1}.

    Para buscar v(x)v{\left(x \right)}:

    1. La integral de las constantes tienen esta constante multiplicada por la variable de integración:

      1dx=x\int 1\, dx = x

    Ahora resolvemos podintegral.

  2. La integral del producto de una función por una constante es la constante por la integral de esta función:

    2x2x2+1dx=2x2x2+1dx\int \frac{2 x^{2}}{x^{2} + 1}\, dx = 2 \int \frac{x^{2}}{x^{2} + 1}\, dx

    1. Vuelva a escribir el integrando:

      x2x2+1=11x2+1\frac{x^{2}}{x^{2} + 1} = 1 - \frac{1}{x^{2} + 1}

    2. Integramos término a término:

      1. La integral de las constantes tienen esta constante multiplicada por la variable de integración:

        1dx=x\int 1\, dx = x

      1. La integral del producto de una función por una constante es la constante por la integral de esta función:

        (1x2+1)dx=1x2+1dx\int \left(- \frac{1}{x^{2} + 1}\right)\, dx = - \int \frac{1}{x^{2} + 1}\, dx

          PieceweseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)

        Por lo tanto, el resultado es: atan(x)- \operatorname{atan}{\left(x \right)}

      El resultado es: xatan(x)x - \operatorname{atan}{\left(x \right)}

    Por lo tanto, el resultado es: 2x2atan(x)2 x - 2 \operatorname{atan}{\left(x \right)}

  3. Ahora simplificar:

    xlog(x2+1)2x+2atan(x)x \log{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}

  4. Añadimos la constante de integración:

    xlog(x2+1)2x+2atan(x)+constantx \log{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}+ \mathrm{constant}


Respuesta:

xlog(x2+1)2x+2atan(x)+constantx \log{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}+ \mathrm{constant}

Respuesta (Indefinida) [src]
  /                                                    
 |                                                     
 |    / 2    \                                 / 2    \
 | log\x  + 1/ dx = C - 2*x + 2*atan(x) + x*log\x  + 1/
 |                                                     
/                                                      
log(x2+1)dx=C+xlog(x2+1)2x+2atan(x)\int \log{\left(x^{2} + 1 \right)}\, dx = C + x \log{\left(x^{2} + 1 \right)} - 2 x + 2 \operatorname{atan}{\left(x \right)}
Gráfica
0.001.000.100.200.300.400.500.600.700.800.900.01.0
Respuesta [src]
     pi         
-2 + -- + log(2)
     2          
2+log(2)+π2-2 + \log{\left(2 \right)} + \frac{\pi}{2}
=
=
     pi         
-2 + -- + log(2)
     2          
2+log(2)+π2-2 + \log{\left(2 \right)} + \frac{\pi}{2}
-2 + pi/2 + log(2)
Respuesta numérica [src]
0.263943507354842
0.263943507354842

    Estos ejemplos se pueden aplicar para introducción de los límites de integración inferior y superior.