Sr Examen

Otras calculadoras:


log(n)^2*(1+n)/(n*log(1+n)^2)

Límite de la función log(n)^2*(1+n)/(n*log(1+n)^2)

cuando
v

Para puntos concretos:

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
     /   2           \
     |log (n)*(1 + n)|
 lim |---------------|
n->oo|      2        |
     \ n*log (1 + n) /
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n \log{\left(n + 1 \right)}^{2}}\right)$$
Limit((log(n)^2*(1 + n))/((n*log(1 + n)^2)), n, oo, dir='-')
Método de l'Hopital
Tenemos la indeterminación de tipo
oo/oo,

tal que el límite para el numerador es
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n}\right) = \infty$$
y el límite para el denominador es
$$\lim_{n \to \infty} \log{\left(n + 1 \right)}^{2} = \infty$$
Vamos a probar las derivadas del numerador y denominador hasta eliminar la indeterminación.
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n \log{\left(n + 1 \right)}^{2}}\right)$$
=
Introducimos una pequeña modificación de la función bajo el signo del límite
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n \log{\left(n + 1 \right)}^{2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n}}{\frac{d}{d n} \log{\left(n + 1 \right)}^{2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left(\frac{\log{\left(n \right)}^{2}}{n} - \frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n^{2}} + \frac{2 \left(n + 1\right) \log{\left(n \right)}}{n^{2}}\right)}{2 \log{\left(n + 1 \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{n + 1}{2 \log{\left(n + 1 \right)}}}{\frac{d}{d n} \frac{1}{\frac{\log{\left(n \right)}^{2}}{n} - \frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n^{2}} + \frac{2 \left(n + 1\right) \log{\left(n \right)}}{n^{2}}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{2 \log{\left(n \right)}^{2}}{n^{2} \log{\left(n + 1 \right)}} - \frac{2 \log{\left(n \right)}^{2}}{n^{2} \log{\left(n + 1 \right)}^{2}} - \frac{2 \log{\left(n \right)}^{3}}{n^{3} \log{\left(n + 1 \right)}} + \frac{2 \log{\left(n \right)}^{3}}{n^{3} \log{\left(n + 1 \right)}^{2}} + \frac{4 \log{\left(n \right)}^{2}}{n^{3} \log{\left(n + 1 \right)}} - \frac{4 \log{\left(n \right)}^{2}}{n^{3} \log{\left(n + 1 \right)}^{2}} + \frac{\log{\left(n \right)}^{4}}{2 n^{4} \log{\left(n + 1 \right)}} - \frac{\log{\left(n \right)}^{4}}{2 n^{4} \log{\left(n + 1 \right)}^{2}} - \frac{2 \log{\left(n \right)}^{3}}{n^{4} \log{\left(n + 1 \right)}} + \frac{2 \log{\left(n \right)}^{3}}{n^{4} \log{\left(n + 1 \right)}^{2}} + \frac{2 \log{\left(n \right)}^{2}}{n^{4} \log{\left(n + 1 \right)}} - \frac{2 \log{\left(n \right)}^{2}}{n^{4} \log{\left(n + 1 \right)}^{2}}}{\frac{2 \log{\left(n \right)}}{n^{2}} - \frac{2}{n^{2}} - \frac{2 \log{\left(n \right)}^{2}}{n^{3}} + \frac{6 \log{\left(n \right)}}{n^{3}} - \frac{2}{n^{3}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{2 \log{\left(n \right)}^{2}}{n^{2} \log{\left(n + 1 \right)}} - \frac{2 \log{\left(n \right)}^{2}}{n^{2} \log{\left(n + 1 \right)}^{2}} - \frac{2 \log{\left(n \right)}^{3}}{n^{3} \log{\left(n + 1 \right)}} + \frac{2 \log{\left(n \right)}^{3}}{n^{3} \log{\left(n + 1 \right)}^{2}} + \frac{4 \log{\left(n \right)}^{2}}{n^{3} \log{\left(n + 1 \right)}} - \frac{4 \log{\left(n \right)}^{2}}{n^{3} \log{\left(n + 1 \right)}^{2}} + \frac{\log{\left(n \right)}^{4}}{2 n^{4} \log{\left(n + 1 \right)}} - \frac{\log{\left(n \right)}^{4}}{2 n^{4} \log{\left(n + 1 \right)}^{2}} - \frac{2 \log{\left(n \right)}^{3}}{n^{4} \log{\left(n + 1 \right)}} + \frac{2 \log{\left(n \right)}^{3}}{n^{4} \log{\left(n + 1 \right)}^{2}} + \frac{2 \log{\left(n \right)}^{2}}{n^{4} \log{\left(n + 1 \right)}} - \frac{2 \log{\left(n \right)}^{2}}{n^{4} \log{\left(n + 1 \right)}^{2}}}{\frac{2 \log{\left(n \right)}}{n^{2}} - \frac{2}{n^{2}} - \frac{2 \log{\left(n \right)}^{2}}{n^{3}} + \frac{6 \log{\left(n \right)}}{n^{3}} - \frac{2}{n^{3}}}\right)$$
=
$$1$$
Como puedes ver, hemos aplicado el método de l'Hopital (utilizando la derivada del numerador y denominador) 2 vez (veces)
Gráfica
Otros límites con n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n \log{\left(n + 1 \right)}^{2}}\right) = 1$$
$$\lim_{n \to 0^-}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n \log{\left(n + 1 \right)}^{2}}\right) = -\infty$$
Más detalles con n→0 a la izquierda
$$\lim_{n \to 0^+}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n \log{\left(n + 1 \right)}^{2}}\right) = \infty$$
Más detalles con n→0 a la derecha
$$\lim_{n \to 1^-}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n \log{\left(n + 1 \right)}^{2}}\right) = 0$$
Más detalles con n→1 a la izquierda
$$\lim_{n \to 1^+}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n \log{\left(n + 1 \right)}^{2}}\right) = 0$$
Más detalles con n→1 a la derecha
$$\lim_{n \to -\infty}\left(\frac{\left(n + 1\right) \log{\left(n \right)}^{2}}{n \log{\left(n + 1 \right)}^{2}}\right) = 1$$
Más detalles con n→-oo
Respuesta rápida [src]
1
$$1$$
Gráfico
Límite de la función log(n)^2*(1+n)/(n*log(1+n)^2)