/ _____________\ / _____________\ / _______________\ / _______________\
| / _____ | | / _____ | | / _____ | | / _____ |
| / 9 \/ 101 | | / 9 \/ 101 | | / 9 \/ 101 | | / 9 \/ 101 |
|x + I* / - + ------- |*|x - I* / - + ------- |*|x + / - - + ------- |*|x - / - - + ------- |
\ \/ 2 2 / \ \/ 2 2 / \ \/ 2 2 / \ \/ 2 2 /
$$\left(x - i \sqrt{\frac{9}{2} + \frac{\sqrt{101}}{2}}\right) \left(x + i \sqrt{\frac{9}{2} + \frac{\sqrt{101}}{2}}\right) \left(x + \sqrt{- \frac{9}{2} + \frac{\sqrt{101}}{2}}\right) \left(x - \sqrt{- \frac{9}{2} + \frac{\sqrt{101}}{2}}\right)$$
(((x + i*sqrt(9/2 + sqrt(101)/2))*(x - i*sqrt(9/2 + sqrt(101)/2)))*(x + sqrt(-9/2 + sqrt(101)/2)))*(x - sqrt(-9/2 + sqrt(101)/2))
Expresión del cuadrado perfecto
Expresemos el cuadrado perfecto del trinomio cuadrático
$$\left(y^{4} + 9 y^{2}\right) - 5$$
Para eso usemos la fórmula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
donde
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
En nuestro caso
$$a = 1$$
$$b = 9$$
$$c = -5$$
Entonces
$$m = \frac{9}{2}$$
$$n = - \frac{101}{4}$$
Pues,
$$\left(y^{2} + \frac{9}{2}\right)^{2} - \frac{101}{4}$$