Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada$$\left(- \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{\frac{3}{2}}{\left(x \right)}} + 4 \sqrt{\tan{\left(x \right)}}\right) \left(\frac{\tan^{2}{\left(x \right)}}{4} + \frac{1}{4}\right) = 0$$
Resolvermos esta ecuaciónRaíces de esta ecuación
$$x_{1} = - \frac{\pi}{6}$$
$$x_{2} = \frac{\pi}{6}$$
Intervalos de convexidad y concavidad:Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[\frac{\pi}{6}, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, \frac{\pi}{6}\right]$$