Sr Examen

Otras calculadoras

Integral de x/(x^4+1)^3 dx

Límites de integración:

interior superior
v

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
 oo             
  /             
 |              
 |      x       
 |  --------- dx
 |          3   
 |  / 4    \    
 |  \x  + 1/    
 |              
/               
1               
1x(x4+1)3dx\int\limits_{1}^{\infty} \frac{x}{\left(x^{4} + 1\right)^{3}}\, dx
Integral(x/(x^4 + 1)^3, (x, 1, oo))
Solución detallada
  1. Hay varias maneras de calcular esta integral.

    Método #1

    1. Vuelva a escribir el integrando:

      x(x4+1)3=xx12+3x8+3x4+1\frac{x}{\left(x^{4} + 1\right)^{3}} = \frac{x}{x^{12} + 3 x^{8} + 3 x^{4} + 1}

    2. que u=x2u = x^{2}.

      Luego que du=2xdxdu = 2 x dx y ponemos dudu:

      12u6+6u4+6u2+2du\int \frac{1}{2 u^{6} + 6 u^{4} + 6 u^{2} + 2}\, du

      1. Vuelva a escribir el integrando:

        12u6+6u4+6u2+2=12(u2+1)3\frac{1}{2 u^{6} + 6 u^{4} + 6 u^{2} + 2} = \frac{1}{2 \left(u^{2} + 1\right)^{3}}

      2. La integral del producto de una función por una constante es la constante por la integral de esta función:

        12(u2+1)3du=1(u2+1)3du2\int \frac{1}{2 \left(u^{2} + 1\right)^{3}}\, du = \frac{\int \frac{1}{\left(u^{2} + 1\right)^{3}}\, du}{2}

          TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**4, substep=RewriteRule(rewritten=(cos(2*_theta)/2 + 1/2)**2, substep=AlternativeRule(alternatives=[RewriteRule(rewritten=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, substep=AddRule(substeps=[ConstantTimesRule(constant=1/4, other=cos(2*_theta)**2, substep=RewriteRule(rewritten=cos(4*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(4*_theta), substep=URule(u_var=_u, u_func=4*_theta, constant=1/4, substep=ConstantTimesRule(constant=1/4, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(4*_theta), symbol=_theta), context=cos(4*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(4*_theta)/2 + 1/2, symbol=_theta), context=cos(2*_theta)**2, symbol=_theta), context=cos(2*_theta)**2/4, symbol=_theta), ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/4, context=1/4, symbol=_theta)], context=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, symbol=_theta), context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta), RewriteRule(rewritten=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, substep=AddRule(substeps=[ConstantTimesRule(constant=1/4, other=cos(2*_theta)**2, substep=RewriteRule(rewritten=cos(4*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(4*_theta), substep=URule(u_var=_u, u_func=4*_theta, constant=1/4, substep=ConstantTimesRule(constant=1/4, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(4*_theta), symbol=_theta), context=cos(4*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(4*_theta)/2 + 1/2, symbol=_theta), context=cos(2*_theta)**2, symbol=_theta), context=cos(2*_theta)**2/4, symbol=_theta), ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/4, context=1/4, symbol=_theta)], context=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, symbol=_theta), context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta)], context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta), context=cos(_theta)**4, symbol=_theta), restriction=True, context=(_u**2 + 1)**(-3), symbol=_u)

        Por lo tanto, el resultado es: u(1u2)16(u2+1)2+u4(u2+1)+3atan(u)16\frac{u \left(1 - u^{2}\right)}{16 \left(u^{2} + 1\right)^{2}} + \frac{u}{4 \left(u^{2} + 1\right)} + \frac{3 \operatorname{atan}{\left(u \right)}}{16}

      Si ahora sustituir uu más en:

      x2(1x4)16(x4+1)2+x24(x4+1)+3atan(x2)16\frac{x^{2} \left(1 - x^{4}\right)}{16 \left(x^{4} + 1\right)^{2}} + \frac{x^{2}}{4 \left(x^{4} + 1\right)} + \frac{3 \operatorname{atan}{\left(x^{2} \right)}}{16}

    Método #2

    1. Vuelva a escribir el integrando:

      x(x4+1)3=xx12+3x8+3x4+1\frac{x}{\left(x^{4} + 1\right)^{3}} = \frac{x}{x^{12} + 3 x^{8} + 3 x^{4} + 1}

    2. que u=x2u = x^{2}.

      Luego que du=2xdxdu = 2 x dx y ponemos dudu:

      12u6+6u4+6u2+2du\int \frac{1}{2 u^{6} + 6 u^{4} + 6 u^{2} + 2}\, du

      1. Vuelva a escribir el integrando:

        12u6+6u4+6u2+2=12(u2+1)3\frac{1}{2 u^{6} + 6 u^{4} + 6 u^{2} + 2} = \frac{1}{2 \left(u^{2} + 1\right)^{3}}

      2. La integral del producto de una función por una constante es la constante por la integral de esta función:

        12(u2+1)3du=1(u2+1)3du2\int \frac{1}{2 \left(u^{2} + 1\right)^{3}}\, du = \frac{\int \frac{1}{\left(u^{2} + 1\right)^{3}}\, du}{2}

          TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**4, substep=RewriteRule(rewritten=(cos(2*_theta)/2 + 1/2)**2, substep=AlternativeRule(alternatives=[RewriteRule(rewritten=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, substep=AddRule(substeps=[ConstantTimesRule(constant=1/4, other=cos(2*_theta)**2, substep=RewriteRule(rewritten=cos(4*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(4*_theta), substep=URule(u_var=_u, u_func=4*_theta, constant=1/4, substep=ConstantTimesRule(constant=1/4, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(4*_theta), symbol=_theta), context=cos(4*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(4*_theta)/2 + 1/2, symbol=_theta), context=cos(2*_theta)**2, symbol=_theta), context=cos(2*_theta)**2/4, symbol=_theta), ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/4, context=1/4, symbol=_theta)], context=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, symbol=_theta), context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta), RewriteRule(rewritten=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, substep=AddRule(substeps=[ConstantTimesRule(constant=1/4, other=cos(2*_theta)**2, substep=RewriteRule(rewritten=cos(4*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(4*_theta), substep=URule(u_var=_u, u_func=4*_theta, constant=1/4, substep=ConstantTimesRule(constant=1/4, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(4*_theta), symbol=_theta), context=cos(4*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(4*_theta)/2 + 1/2, symbol=_theta), context=cos(2*_theta)**2, symbol=_theta), context=cos(2*_theta)**2/4, symbol=_theta), ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/4, context=1/4, symbol=_theta)], context=cos(2*_theta)**2/4 + cos(2*_theta)/2 + 1/4, symbol=_theta), context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta)], context=(cos(2*_theta)/2 + 1/2)**2, symbol=_theta), context=cos(_theta)**4, symbol=_theta), restriction=True, context=(_u**2 + 1)**(-3), symbol=_u)

        Por lo tanto, el resultado es: u(1u2)16(u2+1)2+u4(u2+1)+3atan(u)16\frac{u \left(1 - u^{2}\right)}{16 \left(u^{2} + 1\right)^{2}} + \frac{u}{4 \left(u^{2} + 1\right)} + \frac{3 \operatorname{atan}{\left(u \right)}}{16}

      Si ahora sustituir uu más en:

      x2(1x4)16(x4+1)2+x24(x4+1)+3atan(x2)16\frac{x^{2} \left(1 - x^{4}\right)}{16 \left(x^{4} + 1\right)^{2}} + \frac{x^{2}}{4 \left(x^{4} + 1\right)} + \frac{3 \operatorname{atan}{\left(x^{2} \right)}}{16}

  2. Ahora simplificar:

    3x616(x4+1)2+5x216(x4+1)2+3atan(x2)16\frac{3 x^{6}}{16 \left(x^{4} + 1\right)^{2}} + \frac{5 x^{2}}{16 \left(x^{4} + 1\right)^{2}} + \frac{3 \operatorname{atan}{\left(x^{2} \right)}}{16}

  3. Añadimos la constante de integración:

    3x616(x4+1)2+5x216(x4+1)2+3atan(x2)16+constant\frac{3 x^{6}}{16 \left(x^{4} + 1\right)^{2}} + \frac{5 x^{2}}{16 \left(x^{4} + 1\right)^{2}} + \frac{3 \operatorname{atan}{\left(x^{2} \right)}}{16}+ \mathrm{constant}


Respuesta:

3x616(x4+1)2+5x216(x4+1)2+3atan(x2)16+constant\frac{3 x^{6}}{16 \left(x^{4} + 1\right)^{2}} + \frac{5 x^{2}}{16 \left(x^{4} + 1\right)^{2}} + \frac{3 \operatorname{atan}{\left(x^{2} \right)}}{16}+ \mathrm{constant}

Respuesta (Indefinida) [src]
  /                                                         
 |                          / 2\        2        2 /     4\ 
 |     x              3*atan\x /       x        x *\1 - x / 
 | --------- dx = C + ---------- + ---------- + ------------
 |         3              16         /     4\              2
 | / 4    \                        4*\1 + x /      /     4\ 
 | \x  + 1/                                     16*\1 + x / 
 |                                                          
/                                                           
x(x4+1)3dx=C+x2(1x4)16(x4+1)2+x24(x4+1)+3atan(x2)16\int \frac{x}{\left(x^{4} + 1\right)^{3}}\, dx = C + \frac{x^{2} \left(1 - x^{4}\right)}{16 \left(x^{4} + 1\right)^{2}} + \frac{x^{2}}{4 \left(x^{4} + 1\right)} + \frac{3 \operatorname{atan}{\left(x^{2} \right)}}{16}
Gráfica
1.00001.01001.00101.00201.00301.00401.00501.00601.00701.00801.00900.00.4
Respuesta [src]
  1   3*pi
- - + ----
  8    64 
18+3π64- \frac{1}{8} + \frac{3 \pi}{64}
=
=
  1   3*pi
- - + ----
  8    64 
18+3π64- \frac{1}{8} + \frac{3 \pi}{64}
-1/8 + 3*pi/64

    Estos ejemplos se pueden aplicar para introducción de los límites de integración inferior y superior.