Sr Examen

Otras calculadoras:

Límite de la función factorial(n)/(2+n^2)

cuando
v

Para puntos concretos:

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
     /  n!  \
 lim |------|
n->oo|     2|
     \2 + n /
$$\lim_{n \to \infty}\left(\frac{n!}{n^{2} + 2}\right)$$
Limit(factorial(n)/(2 + n^2), n, oo, dir='-')
Método de l'Hopital
Tenemos la indeterminación de tipo
oo/oo,

tal que el límite para el numerador es
$$\lim_{n \to \infty} n! = \infty$$
y el límite para el denominador es
$$\lim_{n \to \infty}\left(n^{2} + 2\right) = \infty$$
Vamos a probar las derivadas del numerador y denominador hasta eliminar la indeterminación.
$$\lim_{n \to \infty}\left(\frac{n!}{n^{2} + 2}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} n!}{\frac{d}{d n} \left(n^{2} + 2\right)}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{2 n}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{\Gamma\left(n + 1\right)}{2 n}}{\frac{d}{d n} \frac{1}{\operatorname{polygamma}{\left(0,n + 1 \right)}}}\right)$$
=
$$\lim_{n \to \infty}\left(- \frac{\left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{2 n} - \frac{\Gamma\left(n + 1\right)}{2 n^{2}}\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{\operatorname{polygamma}{\left(1,n + 1 \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(- \frac{\operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{\operatorname{polygamma}{\left(1,n + 1 \right)}}\right)}{\frac{d}{d n} \frac{1}{\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{2 n} - \frac{\Gamma\left(n + 1\right)}{2 n^{2}}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{2 n} - \frac{\Gamma\left(n + 1\right)}{2 n^{2}}\right)^{2} \left(\frac{\operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{\operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - 2 \operatorname{polygamma}{\left(0,n + 1 \right)}\right)}{- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{2 n} - \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n} + \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{2}} - \frac{\Gamma\left(n + 1\right)}{n^{3}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{2 n} - \frac{\Gamma\left(n + 1\right)}{2 n^{2}}\right)^{2} \left(\frac{\operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{\operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - 2 \operatorname{polygamma}{\left(0,n + 1 \right)}\right)}{\frac{d}{d n} \left(- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{2 n} - \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n} + \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{2}} - \frac{\Gamma\left(n + 1\right)}{n^{3}}\right)}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{5}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n^{2} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n^{2}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{4 n^{2} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{2 n^{2} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{2} \operatorname{polygamma}{\left(1,n + 1 \right)}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n^{2}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n^{3} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n^{3}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 n^{3} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{n^{3} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n^{3} \operatorname{polygamma}{\left(1,n + 1 \right)}} + \frac{2 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{3}} + \frac{2 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{4} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{4 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{4}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{4 n^{4} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{2 n^{4} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n^{4} \operatorname{polygamma}{\left(1,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n^{4}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{5} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{2 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{5}}}{- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{2 n} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n} - \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n} + \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{2 n^{2}} + \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n^{2}} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{3}} + \frac{3 \Gamma\left(n + 1\right)}{n^{4}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{5}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n^{2} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n^{2}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{4 n^{2} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{2 n^{2} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{2} \operatorname{polygamma}{\left(1,n + 1 \right)}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n^{2}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n^{3} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n^{3}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 n^{3} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{n^{3} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n^{3} \operatorname{polygamma}{\left(1,n + 1 \right)}} + \frac{2 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{3}} + \frac{2 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{4} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{4 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{4}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{4 n^{4} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{2 n^{4} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n^{4} \operatorname{polygamma}{\left(1,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n^{4}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{5} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{2 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{5}}}{- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{2 n} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n} - \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(2,n + 1 \right)}}{2 n} + \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{2 n^{2}} + \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{2 n^{2}} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{3}} + \frac{3 \Gamma\left(n + 1\right)}{n^{4}}}\right)$$
=
$$\infty$$
Como puedes ver, hemos aplicado el método de l'Hopital (utilizando la derivada del numerador y denominador) 4 vez (veces)
Gráfica
Respuesta rápida [src]
oo
$$\infty$$
Otros límites con n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{n!}{n^{2} + 2}\right) = \infty$$
$$\lim_{n \to 0^-}\left(\frac{n!}{n^{2} + 2}\right) = \frac{1}{2}$$
Más detalles con n→0 a la izquierda
$$\lim_{n \to 0^+}\left(\frac{n!}{n^{2} + 2}\right) = \frac{1}{2}$$
Más detalles con n→0 a la derecha
$$\lim_{n \to 1^-}\left(\frac{n!}{n^{2} + 2}\right) = \frac{1}{3}$$
Más detalles con n→1 a la izquierda
$$\lim_{n \to 1^+}\left(\frac{n!}{n^{2} + 2}\right) = \frac{1}{3}$$
Más detalles con n→1 a la derecha
$$\lim_{n \to -\infty}\left(\frac{n!}{n^{2} + 2}\right) = 0$$
Más detalles con n→-oo