Sr Examen

Otras calculadoras:

Límite de la función factorial(n)/(-1+2*n)

cuando
v

Para puntos concretos:

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
     /   n!   \
 lim |--------|
n->oo\-1 + 2*n/
$$\lim_{n \to \infty}\left(\frac{n!}{2 n - 1}\right)$$
Limit(factorial(n)/(-1 + 2*n), n, oo, dir='-')
Método de l'Hopital
Tenemos la indeterminación de tipo
oo/oo,

tal que el límite para el numerador es
$$\lim_{n \to \infty} n! = \infty$$
y el límite para el denominador es
$$\lim_{n \to \infty}\left(2 n - 1\right) = \infty$$
Vamos a probar las derivadas del numerador y denominador hasta eliminar la indeterminación.
$$\lim_{n \to \infty}\left(\frac{n!}{2 n - 1}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} n!}{\frac{d}{d n} \left(2 n - 1\right)}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{2}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{\Gamma\left(n + 1\right)}{2}}{\frac{d}{d n} \frac{1}{\operatorname{polygamma}{\left(0,n + 1 \right)}}}\right)$$
=
$$\lim_{n \to \infty}\left(- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{2 \operatorname{polygamma}{\left(1,n + 1 \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{2}\right)}{\frac{d}{d n} \operatorname{polygamma}{\left(1,n + 1 \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{2} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2}}{\operatorname{polygamma}{\left(2,n + 1 \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{1}{\operatorname{polygamma}{\left(2,n + 1 \right)}}}{\frac{d}{d n} \frac{1}{- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{2} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2}}}\right)$$
=
$$\lim_{n \to \infty}\left(- \frac{\left(- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{2} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2}\right)^{2} \operatorname{polygamma}{\left(3,n + 1 \right)}}{\left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{5}{\left(0,n + 1 \right)}}{2} + \frac{7 \Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2} + \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2} + 3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(- \frac{\left(- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{2} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2}\right)^{2} \operatorname{polygamma}{\left(3,n + 1 \right)}}{\operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}\right)}{\frac{d}{d n} \left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{5}{\left(0,n + 1 \right)}}{2} + \frac{7 \Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{2} + \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{2} + 3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}\right)}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{- \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{9}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{8}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(4,n + 1 \right)}}{4 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{8}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}^{3}{\left(2,n + 1 \right)}} - \frac{5 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{7}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{\operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{6}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(4,n + 1 \right)}}{2 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} + \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{6}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}^{2}{\left(3,n + 1 \right)}}{\operatorname{polygamma}^{3}{\left(2,n + 1 \right)}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{6}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}{\left(2,n + 1 \right)}} - \frac{27 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{5}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} - \frac{9 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(4,n + 1 \right)}}{4 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} + \frac{9 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)} \operatorname{polygamma}^{2}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}^{3}{\left(2,n + 1 \right)}} - \frac{9 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}{\left(2,n + 1 \right)}} - \frac{9 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{\operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}}{\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{6}{\left(0,n + 1 \right)}}{2} + 6 \Gamma\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} + 5 \Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)} + \frac{27 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}}{2} + \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2} + 9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)} + 3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{- \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{9}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{8}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(4,n + 1 \right)}}{4 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{8}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}^{3}{\left(2,n + 1 \right)}} - \frac{5 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{7}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{\operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{6}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(4,n + 1 \right)}}{2 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} + \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{6}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}^{2}{\left(3,n + 1 \right)}}{\operatorname{polygamma}^{3}{\left(2,n + 1 \right)}} - \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{6}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}{\left(2,n + 1 \right)}} - \frac{27 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{5}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} - \frac{9 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(4,n + 1 \right)}}{4 \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}} + \frac{9 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)} \operatorname{polygamma}^{2}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}^{3}{\left(2,n + 1 \right)}} - \frac{9 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2 \operatorname{polygamma}{\left(2,n + 1 \right)}} - \frac{9 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{\operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}}{\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{6}{\left(0,n + 1 \right)}}{2} + 6 \Gamma\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} + 5 \Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)} + \frac{27 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}}{2} + \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{2} + 9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)} + 3 \Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}}\right)$$
=
$$\infty$$
Como puedes ver, hemos aplicado el método de l'Hopital (utilizando la derivada del numerador y denominador) 5 vez (veces)
Gráfica
Otros límites con n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{n!}{2 n - 1}\right) = \infty$$
$$\lim_{n \to 0^-}\left(\frac{n!}{2 n - 1}\right) = -1$$
Más detalles con n→0 a la izquierda
$$\lim_{n \to 0^+}\left(\frac{n!}{2 n - 1}\right) = -1$$
Más detalles con n→0 a la derecha
$$\lim_{n \to 1^-}\left(\frac{n!}{2 n - 1}\right) = 1$$
Más detalles con n→1 a la izquierda
$$\lim_{n \to 1^+}\left(\frac{n!}{2 n - 1}\right) = 1$$
Más detalles con n→1 a la derecha
$$\lim_{n \to -\infty}\left(\frac{n!}{2 n - 1}\right) = 0$$
Más detalles con n→-oo
Respuesta rápida [src]
oo
$$\infty$$