Sr Examen

Otras calculadoras


1/(2*sin(x))-cos(x)-sin(x)

Gráfico de la función y = 1/(2*sin(x))-cos(x)-sin(x)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
          1                      
f(x) = -------- - cos(x) - sin(x)
       2*sin(x)                  
f(x)=(cos(x)+12sin(x))sin(x)f{\left(x \right)} = \left(- \cos{\left(x \right)} + \frac{1}{2 \sin{\left(x \right)}}\right) - \sin{\left(x \right)}
f = -cos(x) + 1/(2*sin(x)) - sin(x)
Gráfico de la función
02468-8-6-4-2-1010-500500
Dominio de definición de la función
Puntos en los que la función no está definida exactamente:
x1=0x_{1} = 0
x2=3.14159265358979x_{2} = 3.14159265358979
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
(cos(x)+12sin(x))sin(x)=0\left(- \cos{\left(x \right)} + \frac{1}{2 \sin{\left(x \right)}}\right) - \sin{\left(x \right)} = 0
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
x1=2atan(1+222+2)x_{1} = 2 \operatorname{atan}{\left(-1 + \sqrt{2} \sqrt{2 - \sqrt{2}} + \sqrt{2} \right)}
x2=2atan(1+2+22+2)x_{2} = - 2 \operatorname{atan}{\left(1 + \sqrt{2} + \sqrt{2} \sqrt{\sqrt{2} + 2} \right)}
x3=2atan(2+1+222)x_{3} = - 2 \operatorname{atan}{\left(- \sqrt{2} + 1 + \sqrt{2} \sqrt{2 - \sqrt{2}} \right)}
x4=2atan(22+2+1+2)x_{4} = - 2 \operatorname{atan}{\left(- \sqrt{2} \sqrt{\sqrt{2} + 2} + 1 + \sqrt{2} \right)}
Solución numérica
x1=73.4347282776614x_{1} = -73.4347282776614
x2=65.5807466436869x_{2} = -65.5807466436869
x3=29.4524311274043x_{3} = -29.4524311274043
x4=45.1603943953533x_{4} = -45.1603943953533
x5=71.0785337874691x_{5} = 71.0785337874691
x6=36.5210145979813x_{6} = 36.5210145979813
x7=17.6714586764426x_{7} = 17.6714586764426
x8=33.3794219443916x_{8} = 33.3794219443916
x9=82.0741080750334x_{9} = 82.0741080750334
x10=93.8550805259951x_{10} = -93.8550805259951
x11=38.8772090881737x_{11} = -38.8772090881737
x12=92.2842841992002x_{12} = -92.2842841992002
x13=82.8595062384308x_{13} = -82.8595062384308
x14=14.5298660228528x_{14} = 14.5298660228528
x15=66.3661448070844x_{15} = 66.3661448070844
x16=8.24668071567321x_{16} = 8.24668071567321
x17=75.7909227678538x_{17} = 75.7909227678538
x18=52.2289778659303x_{18} = 52.2289778659303
x19=87.5718952188155x_{19} = -87.5718952188155
x20=43.5895980685584x_{20} = -43.5895980685584
x21=60.0829594999048x_{21} = 60.0829594999048
x22=12.1736715326604x_{22} = -12.1736715326604
x23=74.2201264410589x_{23} = 74.2201264410589
x24=39.6626072515711x_{24} = 39.6626072515711
x25=100.138265833175x_{25} = -100.138265833175
x26=53.7997741927252x_{26} = 53.7997741927252
x27=5.89048622548086x_{27} = -5.89048622548086
x28=51.4435797025329x_{28} = -51.4435797025329
x29=26.3108384738145x_{29} = -26.3108384738145
x30=42.8041999051609x_{30} = 42.8041999051609
x31=56.1559686829176x_{31} = -56.1559686829176
x32=80.5033117482384x_{32} = 80.5033117482384
x33=57.7267650097125x_{33} = -57.7267650097125
x34=49.0873852123405x_{34} = 49.0873852123405
x35=35.7356164345839x_{35} = -35.7356164345839
x36=11.388273369263x_{36} = 11.388273369263
x37=31.8086256175967x_{37} = 31.8086256175967
x38=55.3705705195201x_{38} = 55.3705705195201
x39=16.8860605130451x_{39} = -16.8860605130451
x40=22.3838476568273x_{40} = 22.3838476568273
x41=5.10508806208341x_{41} = 5.10508806208341
x42=99.3528676697772x_{42} = 99.3528676697772
x43=83.6449044018282x_{43} = 83.6449044018282
x44=1.17809724509617x_{44} = -1.17809724509617
x45=1.96349540849362x_{45} = 1.96349540849362
x46=98.5674695063798x_{46} = -98.5674695063798
x47=60.8683576633022x_{47} = -60.8683576633022
x48=16.1006623496477x_{48} = 16.1006623496477
x49=76.5763209312512x_{49} = -76.5763209312512
x50=93.0696823625976x_{50} = 93.0696823625976
x51=54.5851723561227x_{51} = -54.5851723561227
x52=7.46128255227576x_{52} = -7.46128255227576
x53=4.31968989868597x_{53} = -4.31968989868597
x54=27.096236637212x_{54} = 27.096236637212
x55=44.3749962319558x_{55} = 44.3749962319558
x56=78.1471172580461x_{56} = -78.1471172580461
x57=67.1515429704818x_{57} = -67.1515429704818
x58=61.6537558266997x_{58} = 61.6537558266997
x59=38.0918109247762x_{59} = 38.0918109247762
x60=48.3019870489431x_{60} = -48.3019870489431
x61=88.3572933822129x_{61} = 88.3572933822129
x62=27.8816348006094x_{62} = -27.8816348006094
x63=23.9546439836222x_{63} = 23.9546439836222
x64=89.1426915456104x_{64} = -89.1426915456104
x65=86.0010988920206x_{65} = -86.0010988920206
x66=9.8174770424681x_{66} = 9.8174770424681
x67=58.5121631731099x_{67} = 58.5121631731099
x68=21.5984494934298x_{68} = -21.5984494934298
x69=42.0188017417635x_{69} = -42.0188017417635
x70=45.9457925587507x_{70} = 45.9457925587507
x71=96.2112750161874x_{71} = 96.2112750161874
x72=10.6028752058656x_{72} = -10.6028752058656
x73=13.7444678594553x_{73} = -13.7444678594553
x74=20.8130513300324x_{74} = 20.8130513300324
x75=34.164820107789x_{75} = -34.164820107789
x76=49.872783375738x_{76} = -49.872783375738
x77=86.786497055418x_{77} = 86.786497055418
x78=95.42587685279x_{78} = -95.42587685279
x79=100.923663996572x_{79} = 100.923663996572
x80=77.3617190946487x_{80} = 77.3617190946487
x81=64.009950316892x_{81} = -64.009950316892
x82=64.7953484802895x_{82} = 64.7953484802895
x83=20.0276531666349x_{83} = -20.0276531666349
x84=23.1692458202247x_{84} = -23.1692458202247
x85=89.9280897090078x_{85} = 89.9280897090078
x86=70.2931356240716x_{86} = -70.2931356240716
x87=67.9369411338793x_{87} = 67.9369411338793
x88=30.2378292908018x_{88} = 30.2378292908018
x89=32.5940237809941x_{89} = -32.5940237809941
x90=71.8639319508665x_{90} = -71.8639319508665
x91=79.717913584841x_{91} = -79.717913584841
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en 1/(2*sin(x)) - cos(x) - sin(x).
(cos(0)+12sin(0))sin(0)\left(- \cos{\left(0 \right)} + \frac{1}{2 \sin{\left(0 \right)}}\right) - \sin{\left(0 \right)}
Resultado:
f(0)=~f{\left(0 \right)} = \tilde{\infty}
signof no cruza Y
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
primera derivada
12sin(x)cos(x)sin(x)+sin(x)cos(x)=0- \frac{\frac{1}{2 \sin{\left(x \right)}} \cos{\left(x \right)}}{\sin{\left(x \right)}} + \sin{\left(x \right)} - \cos{\left(x \right)} = 0
Resolvermos esta ecuación
Raíces de esta ecuación
x1=2atan(CRootOf(x6+9x4+16x39x21,0))x_{1} = 2 \operatorname{atan}{\left(\operatorname{CRootOf} {\left(x^{6} + 9 x^{4} + 16 x^{3} - 9 x^{2} - 1, 0\right)} \right)}
x2=2atan(CRootOf(x6+9x4+16x39x21,1))x_{2} = 2 \operatorname{atan}{\left(\operatorname{CRootOf} {\left(x^{6} + 9 x^{4} + 16 x^{3} - 9 x^{2} - 1, 1\right)} \right)}
Signos de extremos en los puntos:
       /       / 6      4       3      2       \\                             1                                 /      /       / 6      4       3      2       \\\      /      /       / 6      4       3      2       \\\ 
(2*atan\CRootOf\x  + 9*x  + 16*x  - 9*x  - 1, 0//, ------------------------------------------------------- - cos\2*atan\CRootOf\x  + 9*x  + 16*x  - 9*x  - 1, 0/// - sin\2*atan\CRootOf\x  + 9*x  + 16*x  - 9*x  - 1, 0///)
                                                        /      /       / 6      4       3      2       \\\                                                                                                                 
                                                   2*sin\2*atan\CRootOf\x  + 9*x  + 16*x  - 9*x  - 1, 0///                                                                                                                 

       /       / 6      4       3      2       \\                             1                                 /      /       / 6      4       3      2       \\\      /      /       / 6      4       3      2       \\\ 
(2*atan\CRootOf\x  + 9*x  + 16*x  - 9*x  - 1, 1//, ------------------------------------------------------- - cos\2*atan\CRootOf\x  + 9*x  + 16*x  - 9*x  - 1, 1/// - sin\2*atan\CRootOf\x  + 9*x  + 16*x  - 9*x  - 1, 1///)
                                                        /      /       / 6      4       3      2       \\\                                                                                                                 
                                                   2*sin\2*atan\CRootOf\x  + 9*x  + 16*x  - 9*x  - 1, 1///                                                                                                                 


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
x1=2atan(CRootOf(x6+9x4+16x39x21,1))x_{1} = 2 \operatorname{atan}{\left(\operatorname{CRootOf} {\left(x^{6} + 9 x^{4} + 16 x^{3} - 9 x^{2} - 1, 1\right)} \right)}
Puntos máximos de la función:
x1=2atan(CRootOf(x6+9x4+16x39x21,0))x_{1} = 2 \operatorname{atan}{\left(\operatorname{CRootOf} {\left(x^{6} + 9 x^{4} + 16 x^{3} - 9 x^{2} - 1, 0\right)} \right)}
Decrece en los intervalos
(,2atan(CRootOf(x6+9x4+16x39x21,0))][2atan(CRootOf(x6+9x4+16x39x21,1)),)\left(-\infty, 2 \operatorname{atan}{\left(\operatorname{CRootOf} {\left(x^{6} + 9 x^{4} + 16 x^{3} - 9 x^{2} - 1, 0\right)} \right)}\right] \cup \left[2 \operatorname{atan}{\left(\operatorname{CRootOf} {\left(x^{6} + 9 x^{4} + 16 x^{3} - 9 x^{2} - 1, 1\right)} \right)}, \infty\right)
Crece en los intervalos
[2atan(CRootOf(x6+9x4+16x39x21,0)),2atan(CRootOf(x6+9x4+16x39x21,1))]\left[2 \operatorname{atan}{\left(\operatorname{CRootOf} {\left(x^{6} + 9 x^{4} + 16 x^{3} - 9 x^{2} - 1, 0\right)} \right)}, 2 \operatorname{atan}{\left(\operatorname{CRootOf} {\left(x^{6} + 9 x^{4} + 16 x^{3} - 9 x^{2} - 1, 1\right)} \right)}\right]
Asíntotas verticales
Hay:
x1=0x_{1} = 0
x2=3.14159265358979x_{2} = 3.14159265358979
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
True

Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
y=limx((cos(x)+12sin(x))sin(x))y = \lim_{x \to -\infty}\left(\left(- \cos{\left(x \right)} + \frac{1}{2 \sin{\left(x \right)}}\right) - \sin{\left(x \right)}\right)
True

Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
y=limx((cos(x)+12sin(x))sin(x))y = \lim_{x \to \infty}\left(\left(- \cos{\left(x \right)} + \frac{1}{2 \sin{\left(x \right)}}\right) - \sin{\left(x \right)}\right)
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función 1/(2*sin(x)) - cos(x) - sin(x), dividida por x con x->+oo y x ->-oo
True

Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
y=xlimx((cos(x)+12sin(x))sin(x)x)y = x \lim_{x \to -\infty}\left(\frac{\left(- \cos{\left(x \right)} + \frac{1}{2 \sin{\left(x \right)}}\right) - \sin{\left(x \right)}}{x}\right)
True

Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
y=xlimx((cos(x)+12sin(x))sin(x)x)y = x \lim_{x \to \infty}\left(\frac{\left(- \cos{\left(x \right)} + \frac{1}{2 \sin{\left(x \right)}}\right) - \sin{\left(x \right)}}{x}\right)
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
(cos(x)+12sin(x))sin(x)=sin(x)cos(x)12sin(x)\left(- \cos{\left(x \right)} + \frac{1}{2 \sin{\left(x \right)}}\right) - \sin{\left(x \right)} = \sin{\left(x \right)} - \cos{\left(x \right)} - \frac{1}{2 \sin{\left(x \right)}}
- No
(cos(x)+12sin(x))sin(x)=sin(x)+cos(x)+12sin(x)\left(- \cos{\left(x \right)} + \frac{1}{2 \sin{\left(x \right)}}\right) - \sin{\left(x \right)} = - \sin{\left(x \right)} + \cos{\left(x \right)} + \frac{1}{2 \sin{\left(x \right)}}
- No
es decir, función
no es
par ni impar
Gráfico
Gráfico de la función y = 1/(2*sin(x))-cos(x)-sin(x)