Se da la desigualdad:
$$\left(\log{\left(x^{2} - 4 \right)}^{16} + \log{\left(x^{2} - 4 \right)}^{16}\right) - 192 \geq 0$$
Para resolver esta desigualdad primero hay que resolver la ecuación correspondiente:
$$\left(\log{\left(x^{2} - 4 \right)}^{16} + \log{\left(x^{2} - 4 \right)}^{16}\right) - 192 = 0$$
Resolvemos:
$$x_{1} = - \sqrt{4 + e^{- \sqrt[16]{96} i}}$$
$$x_{2} = \sqrt{4 + e^{- \sqrt[16]{96} i}}$$
$$x_{3} = - \sqrt{4 + e^{\sqrt[16]{96} i}}$$
$$x_{4} = \sqrt{4 + e^{\sqrt[16]{96} i}}$$
$$x_{5} = - \sqrt{4 + e^{- \sqrt[16]{96} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt[16]{96} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}}$$
$$x_{6} = \sqrt{4 + e^{- \sqrt[16]{96} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt[16]{96} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}}$$
$$x_{7} = - \sqrt{4 + e^{- \sqrt[16]{96} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt[16]{96} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}}$$
$$x_{8} = \sqrt{4 + e^{- \sqrt[16]{96} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt[16]{96} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}}$$
$$x_{9} = - \sqrt{4 + e^{\sqrt[16]{96} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt[16]{96} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}}$$
$$x_{10} = \sqrt{4 + e^{\sqrt[16]{96} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt[16]{96} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}}$$
$$x_{11} = - \sqrt{4 + e^{\sqrt[16]{96} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt[16]{96} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}}$$
$$x_{12} = \sqrt{4 + e^{\sqrt[16]{96} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt[16]{96} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}}$$
$$x_{13} = - \sqrt{4 + e^{- \sqrt[16]{96} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[16]{96} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}}$$
$$x_{14} = \sqrt{4 + e^{- \sqrt[16]{96} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[16]{96} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}}$$
$$x_{15} = - \sqrt{4 + e^{- \sqrt[16]{96} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[16]{96} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}}$$
$$x_{16} = \sqrt{4 + e^{- \sqrt[16]{96} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[16]{96} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}}$$
$$x_{17} = - \sqrt{4 + e^{\sqrt[16]{96} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[16]{96} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}}$$
$$x_{18} = \sqrt{4 + e^{\sqrt[16]{96} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[16]{96} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}}$$
$$x_{19} = - \sqrt{4 + e^{\sqrt[16]{96} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[16]{96} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}}$$
$$x_{20} = \sqrt{4 + e^{\sqrt[16]{96} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[16]{96} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}}$$
$$x_{21} = - \sqrt{4 + e^{- \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3}}{2} - \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3} i}{2}}}$$
$$x_{22} = \sqrt{4 + e^{- \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3}}{2} - \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3} i}{2}}}$$
$$x_{23} = - \sqrt{4 + e^{- \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3}}{2} + \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3} i}{2}}}$$
$$x_{24} = \sqrt{4 + e^{- \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3}}{2} + \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3} i}{2}}}$$
$$x_{25} = - \sqrt{4 + e^{\frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3}}{2} - \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3} i}{2}}}$$
$$x_{26} = \sqrt{4 + e^{\frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3}}{2} - \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3} i}{2}}}$$
$$x_{27} = - \sqrt{4 + e^{\frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3}}{2} + \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3} i}{2}}}$$
$$x_{28} = \sqrt{4 + e^{\frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3}}{2} + \frac{\sqrt[4]{2} \cdot 2^{\frac{9}{16}} \sqrt[16]{3} i}{2}}}$$
$$x_{29} = - \sqrt{e^{- \sqrt[16]{96}} + 4}$$
$$x_{30} = \sqrt{e^{- \sqrt[16]{96}} + 4}$$
$$x_{31} = - \sqrt{e^{\sqrt[16]{96}} + 4}$$
$$x_{32} = \sqrt{e^{\sqrt[16]{96}} + 4}$$
Descartamos las soluciones complejas:
$$x_{1} = - \sqrt{e^{- \sqrt[16]{96}} + 4}$$
$$x_{2} = \sqrt{e^{- \sqrt[16]{96}} + 4}$$
$$x_{3} = - \sqrt{e^{\sqrt[16]{96}} + 4}$$
$$x_{4} = \sqrt{e^{\sqrt[16]{96}} + 4}$$
Las raíces dadas
$$x_{3} = - \sqrt{e^{\sqrt[16]{96}} + 4}$$
$$x_{1} = - \sqrt{e^{- \sqrt[16]{96}} + 4}$$
$$x_{2} = \sqrt{e^{- \sqrt[16]{96}} + 4}$$
$$x_{4} = \sqrt{e^{\sqrt[16]{96}} + 4}$$
son puntos de cambio del signo de desigualdad en las soluciones.
Primero definámonos con el signo hasta el punto extremo izquierdo:
$$x_{0} \leq x_{3}$$
Consideremos, por ejemplo, el punto
$$x_{0} = x_{3} - \frac{1}{10}$$
=
$$- \sqrt{e^{\sqrt[16]{96}} + 4} - \frac{1}{10}$$
=
$$- \sqrt{e^{\sqrt[16]{96}} + 4} - \frac{1}{10}$$
lo sustituimos en la expresión
$$\left(\log{\left(x^{2} - 4 \right)}^{16} + \log{\left(x^{2} - 4 \right)}^{16}\right) - 192 \geq 0$$
$$-192 + \left(\log{\left(-4 + \left(- \sqrt{e^{\sqrt[16]{96}} + 4} - \frac{1}{10}\right)^{2} \right)}^{16} + \log{\left(-4 + \left(- \sqrt{e^{\sqrt[16]{96}} + 4} - \frac{1}{10}\right)^{2} \right)}^{16}\right) \geq 0$$
/ 2\
| / _____________\ |
| | / 16____ | |
16| | 1 / \/ 96 | | >= 0
-192 + 2*log |-4 + |- -- - \/ 4 + e | |
\ \ 10 / /
significa que una de las soluciones de nuestra ecuación será con:
$$x \leq - \sqrt{e^{\sqrt[16]{96}} + 4}$$
_____ _____ _____
\ / \ /
-------•-------•-------•-------•-------
x3 x1 x2 x4
Recibiremos otras soluciones de la desigualdad pasando al polo siguiente etc.
etc.
Respuesta:
$$x \leq - \sqrt{e^{\sqrt[16]{96}} + 4}$$
$$x \geq - \sqrt{e^{- \sqrt[16]{96}} + 4} \wedge x \leq \sqrt{e^{- \sqrt[16]{96}} + 4}$$
$$x \geq \sqrt{e^{\sqrt[16]{96}} + 4}$$