Sr Examen

Otras calculadoras:

Límite de la función 27*factorial(n)/n^3

cuando
v

Para puntos concretos:

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
     /27*n!\
 lim |-----|
n->oo|   3 |
     \  n  /
$$\lim_{n \to \infty}\left(\frac{27 n!}{n^{3}}\right)$$
Limit((27*factorial(n))/n^3, n, oo, dir='-')
Método de l'Hopital
Tenemos la indeterminación de tipo
oo/oo,

tal que el límite para el numerador es
$$\lim_{n \to \infty}\left(27 n!\right) = \infty$$
y el límite para el denominador es
$$\lim_{n \to \infty} n^{3} = \infty$$
Vamos a probar las derivadas del numerador y denominador hasta eliminar la indeterminación.
$$\lim_{n \to \infty}\left(\frac{27 n!}{n^{3}}\right)$$
=
Introducimos una pequeña modificación de la función bajo el signo del límite
$$\lim_{n \to \infty}\left(\frac{27 n!}{n^{3}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} 27 n!}{\frac{d}{d n} n^{3}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{9 \Gamma\left(n + 1\right)}{n^{2}}}{\frac{d}{d n} \frac{1}{\operatorname{polygamma}{\left(0,n + 1 \right)}}}\right)$$
=
$$\lim_{n \to \infty}\left(- \frac{\left(\frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{2}} - \frac{18 \Gamma\left(n + 1\right)}{n^{3}}\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{\operatorname{polygamma}{\left(1,n + 1 \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(- \frac{\operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{\operatorname{polygamma}{\left(1,n + 1 \right)}}\right)}{\frac{d}{d n} \frac{1}{\frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{2}} - \frac{18 \Gamma\left(n + 1\right)}{n^{3}}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\left(\frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{2}} - \frac{18 \Gamma\left(n + 1\right)}{n^{3}}\right)^{2} \left(\frac{\operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{\operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - 2 \operatorname{polygamma}{\left(0,n + 1 \right)}\right)}{- \frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{2}} - \frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{2}} + \frac{36 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{3}} - \frac{54 \Gamma\left(n + 1\right)}{n^{4}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(\frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{2}} - \frac{18 \Gamma\left(n + 1\right)}{n^{3}}\right)^{2} \left(\frac{\operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{\operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - 2 \operatorname{polygamma}{\left(0,n + 1 \right)}\right)}{\frac{d}{d n} \left(- \frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{2}} - \frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{2}} + \frac{36 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{3}} - \frac{54 \Gamma\left(n + 1\right)}{n^{4}}\right)}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{162 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{5}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{4} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{324 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n^{4}} + \frac{81 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{n^{4} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{162 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{n^{4} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} + \frac{324 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{4} \operatorname{polygamma}{\left(1,n + 1 \right)}} - \frac{486 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{4}} - \frac{972 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{5} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{1944 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n^{5}} - \frac{324 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{n^{5} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{648 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{n^{5} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} - \frac{972 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{5} \operatorname{polygamma}{\left(1,n + 1 \right)}} + \frac{1296 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{5}} + \frac{2268 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{6} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{4536 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{6}} + \frac{324 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{n^{6} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{648 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{n^{6} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} + \frac{648 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{6} \operatorname{polygamma}{\left(1,n + 1 \right)}} - \frac{648 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{6}} - \frac{1944 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{7} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{3888 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{7}}}{- \frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n^{2}} - \frac{27 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{2}} - \frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{2}} + \frac{54 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{3}} + \frac{54 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{3}} - \frac{162 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{4}} + \frac{216 \Gamma\left(n + 1\right)}{n^{5}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{162 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{5}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{4} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{324 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n^{4}} + \frac{81 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{n^{4} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{162 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{n^{4} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} + \frac{324 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{4} \operatorname{polygamma}{\left(1,n + 1 \right)}} - \frac{486 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{4}} - \frac{972 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{5} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{1944 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n^{5}} - \frac{324 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{n^{5} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{648 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{n^{5} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} - \frac{972 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{5} \operatorname{polygamma}{\left(1,n + 1 \right)}} + \frac{1296 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{5}} + \frac{2268 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{6} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{4536 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{6}} + \frac{324 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(3,n + 1 \right)}}{n^{6} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} - \frac{648 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}^{2}{\left(2,n + 1 \right)}}{n^{6} \operatorname{polygamma}^{3}{\left(1,n + 1 \right)}} + \frac{648 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{6} \operatorname{polygamma}{\left(1,n + 1 \right)}} - \frac{648 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{6}} - \frac{1944 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{7} \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}} + \frac{3888 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{7}}}{- \frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n^{2}} - \frac{27 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{2}} - \frac{9 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(2,n + 1 \right)}}{n^{2}} + \frac{54 \Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{3}} + \frac{54 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n^{3}} - \frac{162 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{4}} + \frac{216 \Gamma\left(n + 1\right)}{n^{5}}}\right)$$
=
$$\infty$$
Como puedes ver, hemos aplicado el método de l'Hopital (utilizando la derivada del numerador y denominador) 4 vez (veces)
Gráfica
Otros límites con n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{27 n!}{n^{3}}\right) = \infty$$
$$\lim_{n \to 0^-}\left(\frac{27 n!}{n^{3}}\right) = -\infty$$
Más detalles con n→0 a la izquierda
$$\lim_{n \to 0^+}\left(\frac{27 n!}{n^{3}}\right) = \infty$$
Más detalles con n→0 a la derecha
$$\lim_{n \to 1^-}\left(\frac{27 n!}{n^{3}}\right) = 27$$
Más detalles con n→1 a la izquierda
$$\lim_{n \to 1^+}\left(\frac{27 n!}{n^{3}}\right) = 27$$
Más detalles con n→1 a la derecha
$$\lim_{n \to -\infty}\left(\frac{27 n!}{n^{3}}\right) = 0$$
Más detalles con n→-oo
Respuesta rápida [src]
oo
$$\infty$$