Sr Examen

Otras calculadoras

Gráfico de la función y = -4.79*exp(-2*t)-6681.77*exp(-0.2*t)+3153.77*exp(-0.3*t)-2.39*t*cos(t^2)+1.42*t-402.28+4.78*t*sin(t)*cos(t)+0.3*sin(t)*cos(t)+4.57*cos(t^2)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
                             -t            -3*t                                                                                     
                             ---           ----                                                                                     
              -2*t            5             10                                                                                  / 2\
         479*e       668177*e      315377*e       239*t    / 2\   71*t   10057   239*t                 3*sin(t)          457*cos\t /
f(t) = - --------- - ----------- + ------------ - -----*cos\t / + ---- - ----- + -----*sin(t)*cos(t) + --------*cos(t) + -----------
            100          100           100         100             50      25      50                     10                 100    
$$f{\left(t \right)} = \left(\left(\frac{239 t}{50} \sin{\left(t \right)} \cos{\left(t \right)} + \left(\left(\frac{71 t}{50} + \left(- \frac{239 t}{100} \cos{\left(t^{2} \right)} + \left(\left(- \frac{479 e^{- 2 t}}{100} - \frac{668177 e^{- \frac{t}{5}}}{100}\right) + \frac{315377 e^{- \frac{3 t}{10}}}{100}\right)\right)\right) - \frac{10057}{25}\right)\right) + \frac{3 \sin{\left(t \right)}}{10} \cos{\left(t \right)}\right) + \frac{457 \cos{\left(t^{2} \right)}}{100}$$
f = ((239*t/50)*sin(t))*cos(t) + 71*t/50 - 239*t/100*cos(t^2) - 479*exp(-2*t)/100 - 668177*exp(-t/5)/100 + 315377*exp(-3*t/10)/100 - 10057/25 + (3*sin(t)/10)*cos(t) + 457*cos(t^2)/100
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje T con f = 0
o sea hay que resolver la ecuación:
$$\left(\left(\frac{239 t}{50} \sin{\left(t \right)} \cos{\left(t \right)} + \left(\left(\frac{71 t}{50} + \left(- \frac{239 t}{100} \cos{\left(t^{2} \right)} + \left(\left(- \frac{479 e^{- 2 t}}{100} - \frac{668177 e^{- \frac{t}{5}}}{100}\right) + \frac{315377 e^{- \frac{3 t}{10}}}{100}\right)\right)\right) - \frac{10057}{25}\right)\right) + \frac{3 \sin{\left(t \right)}}{10} \cos{\left(t \right)}\right) + \frac{457 \cos{\left(t^{2} \right)}}{100} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje T:

Solución numérica
$$t_{1} = 354.762692608311$$
$$t_{2} = 79.7574270111063$$
$$t_{3} = 75.8891458116847$$
$$t_{4} = 101.656166152599$$
$$t_{5} = 189.281537589827$$
$$t_{6} = 233.629900303766$$
$$t_{7} = 108.325398986805$$
$$t_{8} = 81.9772102867905$$
$$t_{9} = 72.7117669302286$$
$$t_{10} = 194.576897567704$$
$$t_{11} = 88.1419996080917$$
$$t_{12} = 117.163607344832$$
$$t_{13} = 353.786930910009$$
$$t_{14} = 103.977464215842$$
$$t_{15} = 107.014171189609$$
$$t_{16} = 426.247510770376$$
$$t_{17} = 293.384019868464$$
$$t_{18} = 82.2367537264362$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando t es igual a 0:
sustituimos t = 0 en -479*exp(-2*t)/100 - 668177*exp(-t/5)/100 + 315377*exp(-3*t/10)/100 - 239*t/100*cos(t^2) + 71*t/50 - 10057/25 + ((239*t/50)*sin(t))*cos(t) + (3*sin(t)/10)*cos(t) + 457*cos(t^2)/100.
$$\left(\left(\left(\left(\left(\left(\left(- \frac{668177 e^{- 0}}{100} - \frac{479 e^{- 0}}{100}\right) + \frac{315377 e^{- 0}}{100}\right) - \frac{0 \cdot 239}{100} \cos{\left(0^{2} \right)}\right) + \frac{0 \cdot 71}{50}\right) - \frac{10057}{25}\right) + \frac{0 \cdot 239}{50} \sin{\left(0 \right)} \cos{\left(0 \right)}\right) + \frac{3 \sin{\left(0 \right)}}{10} \cos{\left(0 \right)}\right) + \frac{457 \cos{\left(0^{2} \right)}}{100}$$
Resultado:
$$f{\left(0 \right)} = - \frac{7861}{2}$$
Punto:
(0, -7861/2)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d t} f{\left(t \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d t} f{\left(t \right)} = $$
primera derivada
$$\frac{239 t^{2} \sin{\left(t^{2} \right)}}{50} - \frac{239 t \sin^{2}{\left(t \right)}}{50} - \frac{457 t \sin{\left(t^{2} \right)}}{50} + \left(\frac{239 t \cos{\left(t \right)}}{50} + \frac{239 \sin{\left(t \right)}}{50}\right) \cos{\left(t \right)} - \frac{3 \sin^{2}{\left(t \right)}}{10} + \frac{3 \cos^{2}{\left(t \right)}}{10} - \frac{239 \cos{\left(t^{2} \right)}}{100} + \frac{71}{50} + \frac{479 e^{- 2 t}}{50} + \frac{668177 e^{- \frac{t}{5}}}{500} - \frac{946131 e^{- \frac{3 t}{10}}}{1000} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$t_{1} = 25.5620939701186$$
$$t_{2} = 60.0284976028315$$
$$t_{3} = 46.1858721311232$$
$$t_{4} = 11.3550769228536$$
$$t_{5} = 80.5832776004928$$
$$t_{6} = 28.2475762469396$$
$$t_{7} = 16.2425019772975$$
$$t_{8} = 64.2500433893311$$
$$t_{9} = 83.399627922718$$
$$t_{10} = 12.1607346004456$$
$$t_{11} = 9.89223778713139$$
$$t_{12} = 42.2427277419535$$
$$t_{13} = 15.3535638720642$$
$$t_{14} = 16.1506470944167$$
$$t_{15} = 32.0022742879839$$
$$t_{16} = 74.1047625388337$$
$$t_{17} = 22.1367155965153$$
$$t_{18} = 12.0128475826591$$
$$t_{19} = 56.3574966932718$$
$$t_{20} = 70.1408641990001$$
$$t_{21} = 31.5581819037535$$
$$t_{22} = 18.2473953741883$$
$$t_{23} = 66.2007249189901$$
$$t_{24} = 58.2755948247452$$
$$t_{25} = 19.9740733044362$$
$$t_{26} = 13.3856413987408$$
$$t_{27} = 52.2496958105707$$
$$t_{28} = 78.2292266849166$$
$$t_{29} = 48.3462657435853$$
$$t_{30} = 82.204453822137$$
$$t_{31} = 30.1842561918235$$
$$t_{32} = 20.4399367237379$$
$$t_{33} = 31.8051618149549$$
$$t_{34} = 94.1405521380375$$
$$t_{35} = 33.9089191283485$$
$$t_{36} = 30.2880727021071$$
$$t_{37} = 19.8165650233114$$
$$t_{38} = 14.2900354282217$$
$$t_{39} = 24.0432127233219$$
$$t_{40} = 8.27580500489127$$
Signos de extremos en los puntos:
(25.562093970118603, -414.87829086283)

(60.02849760283145, -88.2835437217465)

(46.185872131123155, -336.956413026074)

(11.355076922853568, -966.798553103985)

(80.58327760049276, -256.089191382472)

(28.247576246939648, -451.53778599988)

(16.24250197729749, -614.537902927669)

(64.25004338933105, -413.844144156691)

(83.39962792271795, -536.560274584493)

(12.160734600445558, -887.204198378458)

(9.89223778713139, -1113.86466225692)

(42.24272774195354, -406.595524955307)

(15.353563872064166, -650.984264595503)

(16.15064709441668, -554.931295198481)

(32.002274287983944, -368.986689780612)

(74.1047625388337, -562.938407829749)

(22.13671559651531, -479.585882644763)

(12.012847582659134, -953.430384547783)

(56.357496693271784, -242.541953666734)

(70.14086419900013, -316.988743375628)

(31.558181903753546, -277.325435122802)

(18.247395374188265, -616.763794244041)

(66.20072491899013, -85.1179615968724)

(58.27559482474522, -227.73075755387)

(19.974073304436192, -408.605548347614)

(13.385641398740821, -726.509445629229)

(52.24969581057071, -299.975832678507)

(78.22922668491661, -582.484783813349)

(48.34626574358535, -370.757005197777)

(82.20445382213697, 76.5122382448092)

(30.184256191823458, -487.915560544215)

(20.439936723737866, -436.151749895781)

(31.80516181495487, -386.374452123016)

(94.14055213803755, -96.1015174199105)

(33.90891912834853, -516.22986069639)

(30.288072702107087, -498.530038443833)

(19.816565023311412, -405.631648770265)

(14.29003542822171, -702.798589597198)

(24.043212723321915, -520.489678718798)

(8.275805004891268, -1430.98505800608)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$t_{1} = 25.5620939701186$$
$$t_{2} = 28.2475762469396$$
$$t_{3} = 16.2425019772975$$
$$t_{4} = 64.2500433893311$$
$$t_{5} = 83.399627922718$$
$$t_{6} = 42.2427277419535$$
$$t_{7} = 32.0022742879839$$
$$t_{8} = 74.1047625388337$$
$$t_{9} = 22.1367155965153$$
$$t_{10} = 12.0128475826591$$
$$t_{11} = 70.1408641990001$$
$$t_{12} = 18.2473953741883$$
$$t_{13} = 78.2292266849166$$
$$t_{14} = 48.3462657435853$$
$$t_{15} = 30.1842561918235$$
$$t_{16} = 31.8051618149549$$
$$t_{17} = 33.9089191283485$$
$$t_{18} = 30.2880727021071$$
$$t_{19} = 24.0432127233219$$
$$t_{20} = 8.27580500489127$$
Puntos máximos de la función:
$$t_{20} = 60.0284976028315$$
$$t_{20} = 46.1858721311232$$
$$t_{20} = 11.3550769228536$$
$$t_{20} = 80.5832776004928$$
$$t_{20} = 12.1607346004456$$
$$t_{20} = 9.89223778713139$$
$$t_{20} = 15.3535638720642$$
$$t_{20} = 16.1506470944167$$
$$t_{20} = 56.3574966932718$$
$$t_{20} = 31.5581819037535$$
$$t_{20} = 66.2007249189901$$
$$t_{20} = 58.2755948247452$$
$$t_{20} = 19.9740733044362$$
$$t_{20} = 13.3856413987408$$
$$t_{20} = 52.2496958105707$$
$$t_{20} = 82.204453822137$$
$$t_{20} = 20.4399367237379$$
$$t_{20} = 94.1405521380375$$
$$t_{20} = 19.8165650233114$$
$$t_{20} = 14.2900354282217$$
Decrece en los intervalos
$$\left[83.399627922718, \infty\right)$$
Crece en los intervalos
$$\left(-\infty, 8.27580500489127\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d t^{2}} f{\left(t \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d t^{2}} f{\left(t \right)} = $$
segunda derivada
$$\frac{95600 t^{3} \cos{\left(t^{2} \right)} - 182800 t^{2} \cos{\left(t^{2} \right)} - 95600 t \sin{\left(t \right)} \cos{\left(t \right)} + 143400 t \sin{\left(t^{2} \right)} - 47800 \left(t \sin{\left(t \right)} - 2 \cos{\left(t \right)}\right) \cos{\left(t \right)} - 47800 \left(t \cos{\left(t \right)} + \sin{\left(t \right)}\right) \sin{\left(t \right)} - 47800 \sin^{2}{\left(t \right)} - 12000 \sin{\left(t \right)} \cos{\left(t \right)} - 91400 \sin{\left(t^{2} \right)} - 191600 e^{- 2 t} - 2672708 e^{- \frac{t}{5}} + 2838393 e^{- \frac{3 t}{10}}}{10000} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$t_{1} = 27.1423414899827$$
$$t_{2} = 92.1079314197503$$
$$t_{3} = 74.68532551653$$
$$t_{4} = 4.19579863508362$$
$$t_{5} = 60.2504023869576$$
$$t_{6} = 28.1647734733153$$
$$t_{7} = 59.0655514178733$$
$$t_{8} = 15.9029232862203$$
$$t_{9} = 27.7716012671948$$
$$t_{10} = 35.204527298822$$
$$t_{11} = 54.1251819748878$$
$$t_{12} = 67.9222297482101$$
$$t_{13} = 32.1249698004877$$
$$t_{14} = 34.2088467749407$$
$$t_{15} = 47.7412460615829$$
$$t_{16} = 44.4705946492161$$
$$t_{17} = 56.0919358391114$$
$$t_{18} = 22.3146668988395$$
$$t_{19} = 20.2479791661075$$
$$t_{20} = 44.0803330127687$$
$$t_{21} = 62.2255059636583$$
$$t_{22} = 94.2155518234989$$
$$t_{23} = 70.1520136399282$$
$$t_{24} = 45.6213319854102$$
$$t_{25} = 85.4370579478017$$
$$t_{26} = 7.62422539951845$$
$$t_{27} = -0.230512041259116$$
$$t_{28} = 10.2603171216896$$
$$t_{29} = 58.154320228599$$
$$t_{30} = 2.85795539283023$$
$$t_{31} = 80.1827264666901$$
$$t_{32} = 84.1775641473314$$
$$t_{33} = 40.164762525446$$
$$t_{34} = 46.0326554812457$$
$$t_{35} = 0.332823648912459$$
$$t_{36} = 77.3915161721166$$
$$t_{37} = 49.3271177838759$$
$$t_{38} = 96.0483578210583$$
$$t_{39} = 18.11917938914$$
$$t_{40} = 91.885964965925$$
$$t_{41} = 6.26944233760186$$
$$t_{42} = 76.1020794385702$$
$$t_{43} = 16.5800964075703$$
$$t_{44} = 6.74962666827121$$
$$t_{45} = 90.212505111484$$
$$t_{46} = 37.5367242232826$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[94.2155518234989, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, -0.230512041259116\right]$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con t->+oo y t->-oo
$$\lim_{t \to -\infty}\left(\left(\left(\frac{239 t}{50} \sin{\left(t \right)} \cos{\left(t \right)} + \left(\left(\frac{71 t}{50} + \left(- \frac{239 t}{100} \cos{\left(t^{2} \right)} + \left(\left(- \frac{479 e^{- 2 t}}{100} - \frac{668177 e^{- \frac{t}{5}}}{100}\right) + \frac{315377 e^{- \frac{3 t}{10}}}{100}\right)\right)\right) - \frac{10057}{25}\right)\right) + \frac{3 \sin{\left(t \right)}}{10} \cos{\left(t \right)}\right) + \frac{457 \cos{\left(t^{2} \right)}}{100}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
True

Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
$$y = \lim_{t \to \infty}\left(\left(\left(\frac{239 t}{50} \sin{\left(t \right)} \cos{\left(t \right)} + \left(\left(\frac{71 t}{50} + \left(- \frac{239 t}{100} \cos{\left(t^{2} \right)} + \left(\left(- \frac{479 e^{- 2 t}}{100} - \frac{668177 e^{- \frac{t}{5}}}{100}\right) + \frac{315377 e^{- \frac{3 t}{10}}}{100}\right)\right)\right) - \frac{10057}{25}\right)\right) + \frac{3 \sin{\left(t \right)}}{10} \cos{\left(t \right)}\right) + \frac{457 \cos{\left(t^{2} \right)}}{100}\right)$$
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función -479*exp(-2*t)/100 - 668177*exp(-t/5)/100 + 315377*exp(-3*t/10)/100 - 239*t/100*cos(t^2) + 71*t/50 - 10057/25 + ((239*t/50)*sin(t))*cos(t) + (3*sin(t)/10)*cos(t) + 457*cos(t^2)/100, dividida por t con t->+oo y t ->-oo
$$\lim_{t \to -\infty}\left(\frac{\left(\left(\frac{239 t}{50} \sin{\left(t \right)} \cos{\left(t \right)} + \left(\left(\frac{71 t}{50} + \left(- \frac{239 t}{100} \cos{\left(t^{2} \right)} + \left(\left(- \frac{479 e^{- 2 t}}{100} - \frac{668177 e^{- \frac{t}{5}}}{100}\right) + \frac{315377 e^{- \frac{3 t}{10}}}{100}\right)\right)\right) - \frac{10057}{25}\right)\right) + \frac{3 \sin{\left(t \right)}}{10} \cos{\left(t \right)}\right) + \frac{457 \cos{\left(t^{2} \right)}}{100}}{t}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la izquierda
True

Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
$$y = t \lim_{t \to \infty}\left(\frac{\left(\left(\frac{239 t}{50} \sin{\left(t \right)} \cos{\left(t \right)} + \left(\left(\frac{71 t}{50} + \left(- \frac{239 t}{100} \cos{\left(t^{2} \right)} + \left(\left(- \frac{479 e^{- 2 t}}{100} - \frac{668177 e^{- \frac{t}{5}}}{100}\right) + \frac{315377 e^{- \frac{3 t}{10}}}{100}\right)\right)\right) - \frac{10057}{25}\right)\right) + \frac{3 \sin{\left(t \right)}}{10} \cos{\left(t \right)}\right) + \frac{457 \cos{\left(t^{2} \right)}}{100}}{t}\right)$$
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-t) и f = -f(-t).
Pues, comprobamos:
$$\left(\left(\frac{239 t}{50} \sin{\left(t \right)} \cos{\left(t \right)} + \left(\left(\frac{71 t}{50} + \left(- \frac{239 t}{100} \cos{\left(t^{2} \right)} + \left(\left(- \frac{479 e^{- 2 t}}{100} - \frac{668177 e^{- \frac{t}{5}}}{100}\right) + \frac{315377 e^{- \frac{3 t}{10}}}{100}\right)\right)\right) - \frac{10057}{25}\right)\right) + \frac{3 \sin{\left(t \right)}}{10} \cos{\left(t \right)}\right) + \frac{457 \cos{\left(t^{2} \right)}}{100} = \frac{239 t \sin{\left(t \right)} \cos{\left(t \right)}}{50} + \frac{239 t \cos{\left(t^{2} \right)}}{100} - \frac{71 t}{50} + \frac{315377 e^{\frac{3 t}{10}}}{100} - \frac{668177 e^{\frac{t}{5}}}{100} - \frac{479 e^{2 t}}{100} - \frac{3 \sin{\left(t \right)} \cos{\left(t \right)}}{10} + \frac{457 \cos{\left(t^{2} \right)}}{100} - \frac{10057}{25}$$
- No
$$\left(\left(\frac{239 t}{50} \sin{\left(t \right)} \cos{\left(t \right)} + \left(\left(\frac{71 t}{50} + \left(- \frac{239 t}{100} \cos{\left(t^{2} \right)} + \left(\left(- \frac{479 e^{- 2 t}}{100} - \frac{668177 e^{- \frac{t}{5}}}{100}\right) + \frac{315377 e^{- \frac{3 t}{10}}}{100}\right)\right)\right) - \frac{10057}{25}\right)\right) + \frac{3 \sin{\left(t \right)}}{10} \cos{\left(t \right)}\right) + \frac{457 \cos{\left(t^{2} \right)}}{100} = - \frac{239 t \sin{\left(t \right)} \cos{\left(t \right)}}{50} - \frac{239 t \cos{\left(t^{2} \right)}}{100} + \frac{71 t}{50} - \frac{315377 e^{\frac{3 t}{10}}}{100} + \frac{668177 e^{\frac{t}{5}}}{100} + \frac{479 e^{2 t}}{100} + \frac{3 \sin{\left(t \right)} \cos{\left(t \right)}}{10} - \frac{457 \cos{\left(t^{2} \right)}}{100} + \frac{10057}{25}$$
- No
es decir, función
no es
par ni impar