Sr Examen

Límite de la función n*log(n)*log(log(n))

cuando
v

Para puntos concretos:

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
 lim (n*log(n)*log(log(n)))
n->1+                      
$$\lim_{n \to 1^+}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right)$$
Limit((n*log(n))*log(log(n)), n, 1)
Método de l'Hopital
Tenemos la indeterminación de tipo
0/0,

tal que el límite para el numerador es
$$\lim_{n \to 1^+}\left(n \log{\left(n \right)}\right) = 0$$
y el límite para el denominador es
$$\lim_{n \to 1^+} \frac{1}{\log{\left(\log{\left(n \right)} \right)}} = 0$$
Vamos a probar las derivadas del numerador y denominador hasta eliminar la indeterminación.
$$\lim_{n \to 1^+}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right)$$
=
Introducimos una pequeña modificación de la función bajo el signo del límite
$$\lim_{n \to 1^+}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right)$$
=
$$\lim_{n \to 1^+}\left(\frac{\frac{d}{d n} n \log{\left(n \right)}}{\frac{d}{d n} \frac{1}{\log{\left(\log{\left(n \right)} \right)}}}\right)$$
=
$$\lim_{n \to 1^+}\left(- n \left(\log{\left(n \right)} + 1\right) \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}^{2}\right)$$
=
$$\lim_{n \to 1^+}\left(- \left(\log{\left(n \right)} + 1\right) \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}^{2}\right)$$
=
$$\lim_{n \to 1^+}\left(\frac{\frac{d}{d n} \left(- \left(\log{\left(n \right)} + 1\right) \log{\left(n \right)}\right)}{\frac{d}{d n} \frac{1}{\log{\left(\log{\left(n \right)} \right)}^{2}}}\right)$$
=
$$\lim_{n \to 1^+}\left(- \frac{n \left(\frac{- \log{\left(n \right)} - 1}{n} - \frac{\log{\left(n \right)}}{n}\right) \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}^{3}}{2}\right)$$
=
$$\lim_{n \to 1^+}\left(- \frac{\left(\frac{- \log{\left(n \right)} - 1}{n} - \frac{\log{\left(n \right)}}{n}\right) \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}^{3}}{2}\right)$$
=
$$\lim_{n \to 1^+}\left(\frac{\frac{d}{d n} \left(- \frac{\log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}^{3}}{2}\right)}{\frac{d}{d n} \frac{1}{\frac{- \log{\left(n \right)} - 1}{n} - \frac{\log{\left(n \right)}}{n}}}\right)$$
=
$$\lim_{n \to 1^+}\left(\frac{\left(\frac{- \log{\left(n \right)} - 1}{n} - \frac{\log{\left(n \right)}}{n}\right)^{2} \left(- \frac{\log{\left(\log{\left(n \right)} \right)}^{3}}{2 n} - \frac{3 \log{\left(\log{\left(n \right)} \right)}^{2}}{2 n}\right)}{\frac{- \log{\left(n \right)} - 1}{n^{2}} - \frac{\log{\left(n \right)}}{n^{2}} + \frac{2}{n^{2}}}\right)$$
=
$$\lim_{n \to 1^+}\left(- \frac{\log{\left(\log{\left(n \right)} \right)}^{3}}{2 n} - \frac{3 \log{\left(\log{\left(n \right)} \right)}^{2}}{2 n}\right)$$
=
$$\lim_{n \to 1^+}\left(- \frac{\log{\left(\log{\left(n \right)} \right)}^{3}}{2 n} - \frac{3 \log{\left(\log{\left(n \right)} \right)}^{2}}{2 n}\right)$$
=
$$0$$
Como puedes ver, hemos aplicado el método de l'Hopital (utilizando la derivada del numerador y denominador) 3 vez (veces)
Gráfica
A la izquierda y a la derecha [src]
 lim (n*log(n)*log(log(n)))
n->1+                      
$$\lim_{n \to 1^+}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right)$$
0
$$0$$
= -0.00196163039411559
 lim (n*log(n)*log(log(n)))
n->1-                      
$$\lim_{n \to 1^-}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right)$$
0
$$0$$
= (0.00189820421397449 - 0.000782699429759793j)
= (0.00189820421397449 - 0.000782699429759793j)
Respuesta rápida [src]
0
$$0$$
Otros límites con n→0, -oo, +oo, 1
$$\lim_{n \to 1^-}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right) = 0$$
Más detalles con n→1 a la izquierda
$$\lim_{n \to 1^+}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right) = 0$$
$$\lim_{n \to \infty}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right) = \infty$$
Más detalles con n→oo
$$\lim_{n \to 0^-}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right) = 0$$
Más detalles con n→0 a la izquierda
$$\lim_{n \to 0^+}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right) = 0$$
Más detalles con n→0 a la derecha
$$\lim_{n \to -\infty}\left(n \log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}\right) = -\infty$$
Más detalles con n→-oo
Respuesta numérica [src]
-0.00196163039411559
-0.00196163039411559