Sr Examen

Límite de la función log(factorial(n))/(n*log(n))

cuando
v

Para puntos concretos:

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
     /log(n!) \
 lim |--------|
n->oo\n*log(n)/
$$\lim_{n \to \infty}\left(\frac{\log{\left(n! \right)}}{n \log{\left(n \right)}}\right)$$
Limit(log(factorial(n))/((n*log(n))), n, oo, dir='-')
Método de l'Hopital
Tenemos la indeterminación de tipo
oo/oo,

tal que el límite para el numerador es
$$\lim_{n \to \infty}\left(\frac{\log{\left(n! \right)}}{n}\right) = \infty$$
y el límite para el denominador es
$$\lim_{n \to \infty} \log{\left(n \right)} = \infty$$
Vamos a probar las derivadas del numerador y denominador hasta eliminar la indeterminación.
$$\lim_{n \to \infty}\left(\frac{\log{\left(n! \right)}}{n \log{\left(n \right)}}\right)$$
=
Introducimos una pequeña modificación de la función bajo el signo del límite
$$\lim_{n \to \infty}\left(\frac{\log{\left(n! \right)}}{n \log{\left(n \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{\log{\left(n! \right)}}{n}}{\frac{d}{d n} \log{\left(n \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(n \left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n n!} - \frac{\log{\left(n! \right)}}{n^{2}}\right)\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} n}{\frac{d}{d n} \frac{1}{\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n n!} - \frac{\log{\left(n! \right)}}{n^{2}}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{2} n!^{2}} - \frac{2 \log{\left(n! \right)} \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{3} n!} + \frac{\log{\left(n! \right)}^{2}}{n^{4}}}{- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n n!} - \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n n!} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n n!^{2}} + \frac{2 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{2} n!} - \frac{2 \log{\left(n! \right)}}{n^{3}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n^{2} n!^{2}} - \frac{2 \log{\left(n! \right)} \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{3} n!} + \frac{\log{\left(n! \right)}^{2}}{n^{4}}}{- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n n!} - \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n n!} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n n!^{2}} + \frac{2 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n^{2} n!} - \frac{2 \log{\left(n! \right)}}{n^{3}}}\right)$$
=
$$1$$
Como puedes ver, hemos aplicado el método de l'Hopital (utilizando la derivada del numerador y denominador) 2 vez (veces)
Otros límites con n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{\log{\left(n! \right)}}{n \log{\left(n \right)}}\right) = 1$$
$$\lim_{n \to 0^-}\left(\frac{\log{\left(n! \right)}}{n \log{\left(n \right)}}\right) = 0$$
Más detalles con n→0 a la izquierda
$$\lim_{n \to 0^+}\left(\frac{\log{\left(n! \right)}}{n \log{\left(n \right)}}\right) = 0$$
Más detalles con n→0 a la derecha
$$\lim_{n \to 1^-}\left(\frac{\log{\left(n! \right)}}{n \log{\left(n \right)}}\right) = 1 - \gamma$$
Más detalles con n→1 a la izquierda
$$\lim_{n \to 1^+}\left(\frac{\log{\left(n! \right)}}{n \log{\left(n \right)}}\right) = 1 - \gamma$$
Más detalles con n→1 a la derecha
$$\lim_{n \to -\infty}\left(\frac{\log{\left(n! \right)}}{n \log{\left(n \right)}}\right) = 0$$
Más detalles con n→-oo
Respuesta rápida [src]
1
$$1$$