Sr Examen

Otras calculadoras:

Límite de la función x^(-2)-x-x^2+log(|x|)

cuando
v

Para puntos concretos:

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
     /1         2           \
 lim |-- - x - x  + log(|x|)|
x->oo| 2                    |
     \x                     /
$$\lim_{x \to \infty}\left(\left(- x^{2} + \left(- x + \frac{1}{x^{2}}\right)\right) + \log{\left(\left|{x}\right| \right)}\right)$$
Limit(x^(-2) - x - x^2 + log(|x|), x, oo, dir='-')
Método de l'Hopital
Tenemos la indeterminación de tipo
-oo/oo,

tal que el límite para el numerador es
$$\lim_{x \to \infty}\left(- x^{4} - x^{3} + x^{2} \log{\left(\left|{x}\right| \right)} + 1\right) = -\infty$$
y el límite para el denominador es
$$\lim_{x \to \infty} x^{2} = \infty$$
Vamos a probar las derivadas del numerador y denominador hasta eliminar la indeterminación.
$$\lim_{x \to \infty}\left(\left(- x^{2} + \left(- x + \frac{1}{x^{2}}\right)\right) + \log{\left(\left|{x}\right| \right)}\right)$$
=
Introducimos una pequeña modificación de la función bajo el signo del límite
$$\lim_{x \to \infty}\left(\frac{- x^{4} - x^{3} + x^{2} \log{\left(\left|{x}\right| \right)} + 1}{x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(- x^{4} - x^{3} + x^{2} \log{\left(\left|{x}\right| \right)} + 1\right)}{\frac{d}{d x} x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{- 4 x^{3} - 3 x^{2} + 2 x \log{\left(\left|{x}\right| \right)} + \frac{x \operatorname{re}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\left|{x}\right|} + \frac{x \operatorname{im}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\left|{x}\right|}}{2 x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(- 4 x^{3} - 3 x^{2} + 2 x \log{\left(\left|{x}\right| \right)} + \frac{x \operatorname{re}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\left|{x}\right|} + \frac{x \operatorname{im}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\left|{x}\right|}\right)}{\frac{d}{d x} 2 x}\right)$$
=
$$\lim_{x \to \infty}\left(- 6 x^{2} + \frac{x \operatorname{re}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d^{2}}{d x^{2}} \operatorname{re}{\left(x\right)}}{2 \left|{x}\right|} + \frac{x \operatorname{re}{\left(x\right)} \frac{d}{d x} \operatorname{re}{\left(x\right)} \frac{d}{d x} \operatorname{sign}{\left(x \right)}}{2 \left|{x}\right|} + \frac{x \operatorname{im}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d^{2}}{d x^{2}} \operatorname{im}{\left(x\right)}}{2 \left|{x}\right|} + \frac{x \operatorname{im}{\left(x\right)} \frac{d}{d x} \operatorname{im}{\left(x\right)} \frac{d}{d x} \operatorname{sign}{\left(x \right)}}{2 \left|{x}\right|} - 3 x + \frac{x \operatorname{sign}{\left(x \right)} \left(\frac{d}{d x} \operatorname{re}{\left(x\right)}\right)^{2}}{2 \left|{x}\right|} + \frac{x \operatorname{sign}{\left(x \right)} \left(\frac{d}{d x} \operatorname{im}{\left(x\right)}\right)^{2}}{2 \left|{x}\right|} + \log{\left(\left|{x}\right| \right)} - \frac{\left(\operatorname{re}{\left(x\right)}\right)^{2} \operatorname{sign}^{2}{\left(x \right)} \left(\frac{d}{d x} \operatorname{re}{\left(x\right)}\right)^{2}}{2 \left|{x}\right|^{2}} - \frac{\operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)} \operatorname{sign}^{2}{\left(x \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\left|{x}\right|^{2}} + \frac{3 \operatorname{re}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{2 \left|{x}\right|} - \frac{\left(\operatorname{im}{\left(x\right)}\right)^{2} \operatorname{sign}^{2}{\left(x \right)} \left(\frac{d}{d x} \operatorname{im}{\left(x\right)}\right)^{2}}{2 \left|{x}\right|^{2}} + \frac{3 \operatorname{im}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{2 \left|{x}\right|}\right)$$
=
$$\lim_{x \to \infty}\left(- 6 x^{2} + \frac{x \operatorname{re}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d^{2}}{d x^{2}} \operatorname{re}{\left(x\right)}}{2 \left|{x}\right|} + \frac{x \operatorname{re}{\left(x\right)} \frac{d}{d x} \operatorname{re}{\left(x\right)} \frac{d}{d x} \operatorname{sign}{\left(x \right)}}{2 \left|{x}\right|} + \frac{x \operatorname{im}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d^{2}}{d x^{2}} \operatorname{im}{\left(x\right)}}{2 \left|{x}\right|} + \frac{x \operatorname{im}{\left(x\right)} \frac{d}{d x} \operatorname{im}{\left(x\right)} \frac{d}{d x} \operatorname{sign}{\left(x \right)}}{2 \left|{x}\right|} - 3 x + \frac{x \operatorname{sign}{\left(x \right)} \left(\frac{d}{d x} \operatorname{re}{\left(x\right)}\right)^{2}}{2 \left|{x}\right|} + \frac{x \operatorname{sign}{\left(x \right)} \left(\frac{d}{d x} \operatorname{im}{\left(x\right)}\right)^{2}}{2 \left|{x}\right|} + \log{\left(\left|{x}\right| \right)} - \frac{\left(\operatorname{re}{\left(x\right)}\right)^{2} \operatorname{sign}^{2}{\left(x \right)} \left(\frac{d}{d x} \operatorname{re}{\left(x\right)}\right)^{2}}{2 \left|{x}\right|^{2}} - \frac{\operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)} \operatorname{sign}^{2}{\left(x \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\left|{x}\right|^{2}} + \frac{3 \operatorname{re}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{2 \left|{x}\right|} - \frac{\left(\operatorname{im}{\left(x\right)}\right)^{2} \operatorname{sign}^{2}{\left(x \right)} \left(\frac{d}{d x} \operatorname{im}{\left(x\right)}\right)^{2}}{2 \left|{x}\right|^{2}} + \frac{3 \operatorname{im}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{2 \left|{x}\right|}\right)$$
=
$$-\infty$$
Como puedes ver, hemos aplicado el método de l'Hopital (utilizando la derivada del numerador y denominador) 2 vez (veces)
Gráfica
Respuesta rápida [src]
-oo
$$-\infty$$
Otros límites con x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\left(- x^{2} + \left(- x + \frac{1}{x^{2}}\right)\right) + \log{\left(\left|{x}\right| \right)}\right) = -\infty$$
$$\lim_{x \to 0^-}\left(\left(- x^{2} + \left(- x + \frac{1}{x^{2}}\right)\right) + \log{\left(\left|{x}\right| \right)}\right) = \infty$$
Más detalles con x→0 a la izquierda
$$\lim_{x \to 0^+}\left(\left(- x^{2} + \left(- x + \frac{1}{x^{2}}\right)\right) + \log{\left(\left|{x}\right| \right)}\right) = \infty$$
Más detalles con x→0 a la derecha
$$\lim_{x \to 1^-}\left(\left(- x^{2} + \left(- x + \frac{1}{x^{2}}\right)\right) + \log{\left(\left|{x}\right| \right)}\right) = -1$$
Más detalles con x→1 a la izquierda
$$\lim_{x \to 1^+}\left(\left(- x^{2} + \left(- x + \frac{1}{x^{2}}\right)\right) + \log{\left(\left|{x}\right| \right)}\right) = -1$$
Más detalles con x→1 a la derecha
$$\lim_{x \to -\infty}\left(\left(- x^{2} + \left(- x + \frac{1}{x^{2}}\right)\right) + \log{\left(\left|{x}\right| \right)}\right) = -\infty$$
Más detalles con x→-oo